scispace - formally typeset
Search or ask a question
Institution

Johannes Kepler University of Linz

EducationLinz, Oberösterreich, Austria
About: Johannes Kepler University of Linz is a education organization based out in Linz, Oberösterreich, Austria. It is known for research contribution in the topics: Thin film & Quantum dot. The organization has 6605 authors who have published 19243 publications receiving 385667 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A general model that facilitates in-depth reasoning about guidance is established by extending van Wijk's model of visualization with the fundamental components of guidance, which is defined as a process that gradually narrows the gap that hinders effective continuation of the data analysis.
Abstract: Visual analytics (VA) is typically applied in scenarios where complex data has to be analyzed. Unfortunately, there is a natural correlation between the complexity of the data and the complexity of the tools to study them. An adverse effect of complicated tools is that analytical goals are more difficult to reach. Therefore, it makes sense to consider methods that guide or assist users in the visual analysis process. Several such methods already exist in the literature, yet we are lacking a general model that facilitates in-depth reasoning about guidance. We establish such a model by extending van Wijk's model of visualization with the fundamental components of guidance. Guidance is defined as a process that gradually narrows the gap that hinders effective continuation of the data analysis. We describe diverse inputs based on which guidance can be generated and discuss different degrees of guidance and means to incorporate guidance into VA tools. We use existing guidance approaches from the literature to illustrate the various aspects of our model. As a conclusion, we identify research challenges and suggest directions for future studies. With our work we take a necessary step to pave the way to a systematic development of guidance techniques that effectively support users in the context of VA.

173 citations

Proceedings ArticleDOI
02 Jun 2019
TL;DR: This work provides a method that maps quantum circuits to IBM's QX architectures with a minimal number of SWAP and H operations, and shows by experimental evaluation that the number of operations added by IBM’s heuristic solution exceeds the lower bound by more than 100% on average.
Abstract: The recent progress in the physical realization of quantum computers (the first publicly available ones---IBM's QX architectures---have been launched in 2017) has motivated research on automatic methods that aid users in running quantum circuits on them. Here, certain physical constraints given by the architectures which restrict the allowed interactions of the involved qubits have to be satisfied. Thus far, this has been addressed by inserting SWAP and H operations. However, it remains unknown whether existing methods add a minimum number of SWAP and H operations or, if not, how far they are away from that minimum---an NP-complete problem. In this work, weaddress this by formulating the mapping task as a symbolic optimization problem that is solved using reasoning engines like Boolean satisfiability solvers. By this, we do not only provide a method that maps quantum circuits to IBM's QX architectures with a minimal number of SWAP and H operations, but also show by experimental evaluation that the number of operations added by IBM's heuristic solution exceeds the lower bound by more than 100% on average. An implementation of the proposed methodology is publicly available at http://iic.jku.at/eda/research/ibm_qx_mapping.

171 citations

Journal ArticleDOI
TL;DR: The fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel that exhibits admittance of 100 mS cm−2 and maintains high admittance even in a low-frequency range is demonstrated.
Abstract: In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

171 citations

Journal ArticleDOI
01 Mar 2011
TL;DR: This paper explored two research questions regarding the implementation of variability and the utility of DOPLER for variability modeling in different domains and conducted a multiple case study consisting of four cases in the domains of industrial automation systems and business software.
Abstract: The variability of a product line is typically defined in models. However, many existing variability modeling approaches are rigid and don't allow sufficient domain-specific adaptations. We have thus been developing a flexible and extensible approach for defining product line variability models. Its main purposes are to guide stakeholders through product derivation and to automatically generate product configurations. Our approach is supported by the DOPLER (Decision-Oriented Product Line Engineering for effective Reuse) meta-tool that allows modelers to specify the types of reusable assets, their attributes, and dependencies for their specific system and context. The aim of this paper is to investigate the suitability of our approach for different domains. More specifically, we explored two research questions regarding the implementation of variability and the utility of DOPLER for variability modeling in different domains. We conducted a multiple case study consisting of four cases in the domains of industrial automation systems and business software. In each of these case studies we analyzed variability implementation techniques. Experts from our industry partners then developed domain-specific meta-models, tool extensions, and variability models for their product lines using DOPLER. The four cases demonstrate the flexibility of the DOPLER approach and the extensibility and adaptability of the supporting meta tool.

171 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical H(curl)conforming finite elements for triangular and tetrahedral element geometries is presented. But the shape functions are classified as lowest order Nedelec, higher order edge-based, face-based and element-based.
Abstract: Purpose – The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements.Design/methodology/approach – Discusses a systematic strategy for the realization of arbitrary order hierarchic H(curl)‐conforming finite elements for triangular and tetrahedral element geometries. The shape functions are classified as lowest order Nedelec, higher‐order edge‐based, face‐based (only in 3D) and element‐based ones.Findings – Our new shape functions provide not only the global complete sequence property but also local complete sequence properties for each edge‐, face‐, and element‐block. This local property allows an arbitrary variable choice of the polynomial degree for each edge, face, and element. A second advantage of this construction is that simple block‐diagonal preconditioning gets efficient. Our high order shape functions contain gradient shape functions explicitly. In the case of a magnetostatic boundary value problem, the gradien...

171 citations


Authors

Showing all 6718 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
A. Paul Alivisatos146470101741
Klaus-Robert Müller12976479391
Christoph J. Brabec12089668188
Andreas Heinz108107845002
Niyazi Serdar Sariciftci9959154055
Lars Samuelson9685036931
Peter J. Oefner9034830729
Dmitri V. Talapin9030339572
Tomás Torres8862528223
Ramesh Raskar8667030675
Siegfried Bauer8442226759
Alexander Eychmüller8244423688
Friedrich Schneider8255427383
Maksym V. Kovalenko8136034805
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

RWTH Aachen University
96.2K papers, 2.5M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
202354
2022187
20211,404
20201,412
20191,365