scispace - formally typeset
Search or ask a question
Institution

John Radcliffe Hospital

HealthcareOxford, Oxfordshire, United Kingdom
About: John Radcliffe Hospital is a healthcare organization based out in Oxford, Oxfordshire, United Kingdom. It is known for research contribution in the topics: Population & Antigen. The organization has 14491 authors who have published 23670 publications receiving 1459015 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It takes considerable time to establish expertise in developing programmes for the control and management of these conditions, and the lessons learned in developed countries will need to be transmitted to those countries in which they occur at a high frequency.
Abstract: Despite major advances in our understanding of the molecular pathology, pathophysiology, and control and management of the inherited disorders of haemoglobin, thousands of infants and children with these diseases are dying through lack of appropriate medical care. This problem will undoubtedly increase over the next 20 years because, as the result of a reduction in childhood mortality due to infection and malnutrition, more babies with haemoglobin disorders will survive to present for treatment. Although WHO and various voluntary agencies have tried to disseminate information about these diseases, they are rarely mentioned as being sufficiently important to be included in setting health care priorities for the future. It takes considerable time to establish expertise in developing programmes for the control and management of these conditions, and the lessons learned in developed countries will need to be transmitted to those countries in which they occur at a high frequency.

1,121 citations

Journal ArticleDOI
27 Jul 2010-Brain
TL;DR: The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes.
Abstract: Antibodies that immunoprecipitate (125)I-alpha-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan's syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with (125)I-alpha-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan's syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients.

1,115 citations

Journal ArticleDOI
TL;DR: The results indicate a specific role for this region in integrating the outcomes of two or more separate cognitive operations in the pursuit of a higher behavioural goal.
Abstract: The anterior prefrontal cortex (aPFC), or Brodmann area 10, is one of the least well understood regions of the human brain. Work with non-human primates has provided almost no indications as to the function of this area. In recent years, investigators have attempted to integrate findings from functional neuroimaging studies in humans to generate models that might describe the contribution that this area makes to cognition. In all cases, however, such explanations are either too tied to a given task to be plausible or too general to be theoretically useful. Here, we use an account that is consistent with the connectional and cellular anatomy of the aPFC to explain the key features of existing models within a common theoretical framework. The results indicate a specific role for this region in integrating the outcomes of two or more separate cognitive operations in the pursuit of a higher behavioural goal.

1,114 citations

Journal ArticleDOI
TL;DR: Observations suggest an enrichment of both IL-17+CD4+ and CD8+ T cells in active MS lesions as well as an important role for IL- 17 in MS pathogenesis, with some remarkable differences from the experimental autoimmune encephalomyelitis model.
Abstract: Recent findings in the animal model for multiple sclerosis (MS), experimental autoimmune encephalomyelitis, implicate a novel CD4+ T-cell subset (TH17), characterized by the secretion of interleukin-17 (IL-17), in disease pathogenesis. To elucidate its role in MS, brain tissues from patients with MS were compared to controls. We detected expression of IL-17 mRNA (by in situ hybridization) and protein (by immunohistochemistry) in perivascular lymphocytes as well as in astrocytes and oligodendrocytes located in the active areas of MS lesions. Further, we found a significant increase in the number of IL-17+ T cells in active rather than inactive areas of MS lesions. Specifically, double immunofluorescence showed that IL-17 immunoreactivity was detected in 79% of T cells in acute lesions, 73% in active areas of chronic active lesions, but in only 17% of those in inactive lesions and 7% in lymph node control tissue. CD8+, as well as CD4+, T cells were equally immunostained for IL-17 in MS tissues. Interestingly, and in contrast to lymph node T cells, no perivascular T cells showed FoxP3 expression, a marker of regulatory T cells, at any stage of MS lesions. These observations suggest an enrichment of both IL-17+CD4+ and CD8+ T cells in active MS lesions as well as an important role for IL-17 in MS pathogenesis, with some remarkable differences from the experimental autoimmune encephalomyelitis model.

1,113 citations

Journal ArticleDOI
TL;DR: This work examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging to hypothesized that functional connectivity of intrinsic brain activity in the "default-mode" network (DMN) is affected by normal aging and that this relates to cognitive function.
Abstract: Normal aging is associated with cognitive decline. Functions such as attention, information processing, and working memory are compromised. It has been hypothesized that not only regional changes, but also alterations in the integration of regional brain activity (functional brain connectivity) underlie the observed agerelated deficits. Here, we examined the functional properties of brain networks based on spontaneous fluctuations within brain systems using functional magnetic resonance imaging. We hypothesized that functional connectivity of intrinsic brain activity in the ‘‘default-mode’’ network (DMN) is affected by normal aging and that this relates to cognitive function. Ten younger and 22 older subjects were scanned at ‘‘rest,’’ that is, lying awake with eyes closed. Our results show decreased activity in older versus younger subjects in 2 resting-state networks (RSNs) resembling the previously described DMN, containing the superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior parietal region. These results remain significant after correction for RSN-specific gray matter volume. The relevance of these findings is illustrated by the correlation between reduced activity of one of these RSNs and less effective executive functioning/processing speed in the older group.

1,106 citations


Authors

Showing all 14542 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Salim Yusuf2311439252912
David J. Hunter2131836207050
Mark I. McCarthy2001028187898
Stuart H. Orkin186715112182
Richard Peto183683231434
Ralph M. Steinman171453121518
Adrian L. Harris1701084120365
Rory Collins162489193407
Nicholas J. White1611352104539
David W. Johnson1602714140778
David Cella1561258106402
Edmund T. Rolls15361277928
Martin A. Nowak14859194394
Kypros H. Nicolaides147130287091
Network Information
Related Institutions (5)
Leiden University Medical Center
38K papers, 1.6M citations

94% related

Medical Research Council
19.1K papers, 1.4M citations

92% related

Beth Israel Deaconess Medical Center
52.5K papers, 2.9M citations

92% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

92% related

Baylor College of Medicine
94.8K papers, 5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202252
20211,048
20201,013
2019916
2018773