scispace - formally typeset
Search or ask a question
Institution

John Radcliffe Hospital

HealthcareOxford, Oxfordshire, United Kingdom
About: John Radcliffe Hospital is a healthcare organization based out in Oxford, Oxfordshire, United Kingdom. It is known for research contribution in the topics: Population & Antigen. The organization has 14491 authors who have published 23670 publications receiving 1459015 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that B272-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2+ CD4 T cells, which link HLA-B27 with IL- 17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.
Abstract: CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previously shown that B27 can form H chain dimers (termed B272), which, unlike classical HLA-B27, bind the killer-cell Ig-like receptor KIR3DL2. In this article, we show that B272-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2+ CD4 T cells. KIR3DL2+ CD4 T cells are expanded and enriched for IL-17 production in the blood and synovial fluid of patients with SpA. Despite KIR3DL2+ cells comprising a mean of just 15% of CD4 T in the peripheral blood of SpA patients, this subset accounted for 70% of the observed increase in Th17 numbers in SpA patients compared with control subjects. TCR-stimulated peripheral blood KIR3DL2+ CD4 T cell lines from SpA patients secreted 4-fold more IL-17 than KIR3DL2+ lines from controls or KIR3DL2− CD4 T cells. Strikingly, KIR3DL2+ CD4 T cells account for the majority of peripheral blood CD4 T cell IL-23R expression and produce more IL-17 in the presence of IL-23. Our findings link HLA-B27 with IL-17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.

277 citations

Book ChapterDOI
TL;DR: Understanding of pathophysiological mechanisms in malaria has advanced considerably in areas, such as the pathogenesis of metabolic dysfunction, the molecular processes involved in cytoadherence, and the causes of anaemia, but in other areas progress has been slow.
Abstract: Publisher Summary The resurgence of malaria in the past two decades has stimulated a considerable amount of scientific and medical research. Understanding of pathophysiological mechanisms in malaria has advanced considerably in areas, such as the pathogenesis of metabolic dysfunction, the molecular processes involved in cytoadherence, and the causes of anaemia. However, in other areas progress has been slow. Much of the recent research has been conducted either with animal models or with cultured P. fakiparum parasites. The relevance of the observations, and the hypotheses they generate, to disease in man still needs to be established in many cases. The roles of cytoadherence, rosetting, and cytokine release have come to the fore, whereas the parts played by immune damage, intravascular coagulation, and increased vascular permeability have receded. Clinical investigation has taken some of the mystery out of malaria, but still relatively little is known for certain. The next challenge is to translate these advances in understanding of pathophysiology into improved treatments.

277 citations

Journal ArticleDOI
TL;DR: The β subunit of the high-affinity receptor for IgE (Fc∈RI-β) also lies on chromosome 11 q13, and that it is in close genetic linkage with the gene for atopy, making it a candidate for the chromosome 11 atopy locus.

277 citations

Journal ArticleDOI
TL;DR: It is shown that induction of autophagy by Bortezomib is dependent on the proteasomal stabilisation of ATF4 and up-regulation of LC3B by ATF4, and that ATF3B and LC4 play a critical role in activatingAutophagy and protecting cells from Bortsomib-induced cell death.
Abstract: The ubiquitin-proteasome system plays a key regulatory role in cellular homeostasis. The inhibition of the 26S proteasome by Bortezomib leads to the accumulation of misfolded proteins, resulting in endoplasmic reticulum stress followed by a coordinated cellular response called unfolded protein response (UPR). Endoplasmic reticulum stress is also a potent inducer of macroautophagy. Bortezomib is a selective and potent inhibitor of the 26S proteasome and is approved for the treatment of multiple myeloma. Clinical trials with Bortezomib have shown promising results for some types of cancers, but not for some others, including those of the breast. In this study, we show that Bortezomib induces the UPR and autophagy in MCF7 breast cancer cells. Surprisingly, Bortezomib did not induce phosphorylation of PERK, a key initial step of the UPR. We show that induction of autophagy by Bortezomib is dependent on the proteasomal stabilisation of ATF4 and up-regulation of LC3B by ATF4. We show that ATF4 and LC3B play a critical role in activating autophagy and protecting cells from Bortezomib-induced cell death. Our experiments also reveal that HDAC6 knockdown results in decreased LC3B protein and reduced autophagy. Our work shows that the induction of autophagy through ATF4 may be an important resistance mechanism to Bortezomib treatment in breast cancer, and targeting autophagy may represent a novel approach to sensitize breast cancers to Bortezomib.

277 citations


Authors

Showing all 14542 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Salim Yusuf2311439252912
David J. Hunter2131836207050
Mark I. McCarthy2001028187898
Stuart H. Orkin186715112182
Richard Peto183683231434
Ralph M. Steinman171453121518
Adrian L. Harris1701084120365
Rory Collins162489193407
Nicholas J. White1611352104539
David W. Johnson1602714140778
David Cella1561258106402
Edmund T. Rolls15361277928
Martin A. Nowak14859194394
Kypros H. Nicolaides147130287091
Network Information
Related Institutions (5)
Leiden University Medical Center
38K papers, 1.6M citations

94% related

Medical Research Council
19.1K papers, 1.4M citations

92% related

Beth Israel Deaconess Medical Center
52.5K papers, 2.9M citations

92% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

92% related

Baylor College of Medicine
94.8K papers, 5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202311
202252
20211,048
20201,013
2019916
2018773