scispace - formally typeset
Search or ask a question
Institution

Johns Hopkins University School of Medicine

HealthcareBaltimore, Maryland, United States
About: Johns Hopkins University School of Medicine is a healthcare organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 44277 authors who have published 79222 publications receiving 4788882 citations.
Topics: Population, Medicine, Cancer, Transplantation, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: A model for the budding of HIV virions through lipid rafts is proposed whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafting.
Abstract: A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.

786 citations

Journal ArticleDOI
TL;DR: Understanding of the normative biology of astrocytes has been aided by the development of animal models in which astroCyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have revealedAstrocyte- specific pathologies that contribute to Neurodegeneration.
Abstract: The term neurodegenerative disease refers to the principal pathology associated with disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease and Parkinson's disease, and it is presumed that neurodegeneration results in the clinical findings seen in patients with these diseases. Decades of pathological and physiological studies have focused on neuronal abnormalities in these disorders, but it is becoming increasingly evident that astrocytes are also important players in these and other neurological disorders. Our understanding of the normative biology of astrocytes has been aided by the development of animal models in which astrocyte-specific proteins and pathways have been manipulated, and mouse models of neurodegenerative diseases have also revealed astrocyte-specific pathologies that contribute to neurodegeneration. These models have led to the development of targeted therapies for pathways in which astrocytes participate, and this research should ultimately influence the clinical treatment of neurodegenerative disorders.

786 citations

Journal ArticleDOI
TL;DR: The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled and skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism.
Abstract: Myostatin is a secreted protein that acts as a negative regulator of skeletal muscle mass. During embryogenesis, myostatin is expressed by cells in the myotome and in developing skeletal muscle and acts to regulate the final number of muscle fibers that are formed. During adult life, myostatin protein is produced by skeletal muscle, circulates in the blood, and acts to limit muscle fiber growth. The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled. Skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism, and myostatin appears to be the first example of the long-sought chalone.

786 citations

Journal ArticleDOI
30 Oct 2013-Neuron
TL;DR: The progress over the last two and a half decades is reviewed, the future challenges in the field are discussed and a large number of proteins have been identified that regulate this complex process.

783 citations

Journal ArticleDOI
TL;DR: Observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing.
Abstract: Juvenile amyotrophic lateral sclerosis (ALS4) is a rare autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS) characterized by distal muscle weakness and atrophy, normal sensation, and pyramidal signs. Individuals affected with ALS4 usually have an onset of symptoms at age Senataxin gene ( SETX ). The SETX gene encodes a novel 302.8-kD protein. Although its function remains unknown, SETX contains a DNA/RNA helicase domain with strong homology to human RENT1 and IGHMBP2, two genes encoding proteins known to have roles in RNA processing. These observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing.

783 citations


Authors

Showing all 44754 results

NameH-indexPapersCitations
Robert Langer2812324326306
Bert Vogelstein247757332094
Solomon H. Snyder2321222200444
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Hagop M. Kantarjian2043708210208
Mark P. Mattson200980138033
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Aaron R. Folsom1811118134044
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
Daniel R. Weinberger177879128450
David Baker1731226109377
Eliezer Masliah170982127818
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

99% related

Baylor College of Medicine
94.8K papers, 5M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023149
2022622
20216,078
20205,107
20194,444
20183,848