scispace - formally typeset
Search or ask a question
Institution

Johns Hopkins University School of Medicine

HealthcareBaltimore, Maryland, United States
About: Johns Hopkins University School of Medicine is a healthcare organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 44277 authors who have published 79222 publications receiving 4788882 citations.
Topics: Population, Medicine, Cancer, Transplantation, Gene


Papers
More filters
Journal ArticleDOI
05 Aug 1977-Science
TL;DR: The binding of [3H]haloperidol to rat striatal dopamine receptors increases after lesion (made by injection of 6-hydroxydopamine) of the nigrostriatal dopamine pathway in those rats which are behaviorally supersensitive, as reflected by apomorphine-induced contralateral rotations.
Abstract: The binding of [3H]haloperidol to rat striatal dopamine receptors increases after lesion (made by injection of 6-hydroxydopamine) of the nigrostriatal dopamine pathway in those rats which are behaviorally supersensitive, as reflected by apomorphine-induced contralateral rotations. The enhanced binding is associated with an increased number of receptor sites with no change in their affinity.

714 citations

Journal ArticleDOI
TL;DR: The adapted comorbidity index can be used to predict resource utilization and may help to identify targets for reducing high costs, by prospectively identifying those at high risk.

714 citations

Journal ArticleDOI
TL;DR: A review of the evidence for the role of diabetes mellitus in susceptibility to, clinical presentation of, and response to treatment for tuberculosis can be found in this paper, where potential mechanisms by which diabetes can cause tuberculosis, the effects of tuberculosis on diabetic control, and pharmacokinetic issues related to the co-management of diabetes and tuberculosis.
Abstract: The link between diabetes mellitus and tuberculosis has been recognised for centuries. In recent decades, tuberculosis incidence has declined in high-income countries, but incidence remains high in countries that have high rates of infection with HIV, high prevalence of malnutrition and crowded living conditions, or poor tuberculosis control infrastructure. At the same time, diabetes mellitus prevalence is soaring globally, fuelled by obesity. There is growing evidence that diabetes mellitus is an important risk factor for tuberculosis and might affect disease presentation and treatment response. Furthermore, tuberculosis might induce glucose intolerance and worsen glycaemic control in people with diabetes. We review the epidemiology of the tuberculosis and diabetes epidemics, and provide a synopsis of the evidence for the role of diabetes mellitus in susceptibility to, clinical presentation of, and response to treatment for tuberculosis. In addition, we review potential mechanisms by which diabetes mellitus can cause tuberculosis, the effects of tuberculosis on diabetic control, and pharmacokinetic issues related to the co-management of diabetes and tuberculosis.

712 citations

Journal ArticleDOI
TL;DR: An overview of the physiological and pathological roles of NRF2 is provided, emerging pharmacological modulators of theNRF2–KEAP1 axis are presented and associated drug development challenges are highlighted.
Abstract: The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.

712 citations


Authors

Showing all 44754 results

NameH-indexPapersCitations
Robert Langer2812324326306
Bert Vogelstein247757332094
Solomon H. Snyder2321222200444
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Hagop M. Kantarjian2043708210208
Mark P. Mattson200980138033
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Aaron R. Folsom1811118134044
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
Daniel R. Weinberger177879128450
David Baker1731226109377
Eliezer Masliah170982127818
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

99% related

Baylor College of Medicine
94.8K papers, 5M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023149
2022622
20216,078
20205,107
20194,444
20183,848