scispace - formally typeset
Search or ask a question
Institution

Johns Hopkins University School of Medicine

HealthcareBaltimore, Maryland, United States
About: Johns Hopkins University School of Medicine is a healthcare organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 44277 authors who have published 79222 publications receiving 4788882 citations.


Papers
More filters
Journal ArticleDOI
08 May 2009-Science
TL;DR: The synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB are described.
Abstract: New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.

639 citations

Journal ArticleDOI
TL;DR: The progress of the HPO project is reviewed, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.
Abstract: Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

638 citations

Journal ArticleDOI
TL;DR: A review of the pathogenesis and prognostic value of MSI, diagnostic guidelines for detecting it, and the frequency of MSI across tumors, with the goal of providing a reference for its use as a biomarker for PD-1 blockade.
Abstract: Initial results by Le and colleagues, which were published in the June 25, 2015 issue of the New England Journal of Medicine, report significant responses of cancers with microsatellite instability (MSI) to anti-PD-1 inhibitors in patients who failed conventional therapy. This finding fits into a broader body of research associating somatic hypermutation and neoepitope formation with response to immunotherapy, with the added benefit of relying on a simple, widely used diagnostic test. This review surveys the pathogenesis and prognostic value of MSI, diagnostic guidelines for detecting it, and the frequency of MSI across tumors, with the goal of providing a reference for its use as a biomarker for PD-1 blockade. MSI usually arises from either germline mutations in components of the mismatch repair (MMR) machinery (MSH2, MSH6, MLH1, PMS2) in patients with Lynch syndrome or somatic hypermethylation of the MLH1 promoter. The result is a cancer with a 10- to 100-fold increase in mutations, associated in the colon with poor differentiation, an intense lymphocytic infiltrate, and a superior prognosis. Diagnostic approaches have evolved since the early 1990s, from relying exclusively on clinical criteria to incorporating pathologic features, PCR-based MSI testing, and immunohistochemistry for loss of MMR component expression. Tumor types can be grouped into categories based on the frequency of MSI, from colorectal (20%) and endometrial (22%-33%) to cervical (8%) and esophageal (7%) to skin and breast cancers (0%-2%). If initial results are validated, MSI testing could have an expanded role as a tool in the armamentarium of precision medicine.

638 citations

Journal ArticleDOI
TL;DR: New targeted biologic agents, particularly those involved with the vascular endothelial growth factor pathway and those targeting the poly (ADP‐ribose) polymerase (PARP) enzyme, hold great promise for improving the outcome of ovarian cancer.
Abstract: Epithelial ovarian cancer is the most lethal of the gynecologic malignancies, largely due to the advanced stage at diagnosis in most patients. Screening strategies using ultrasound and the cancer antigen (CA) 125 tumor marker are currently under study and may lower stage at diagnosis but have not yet been shown to improve survival. Women who have inherited a deleterious mutation in the BRCA1 or BRCA2 gene and those with the Lynch syndrome (hereditary nonpolyposis colorectal cancer) have the highest risk of developing ovarian cancer but account for only approximately 10% of those with the disease. Other less common and less well-defined genetic syndromes may increase the risk of ovarian cancer, but their contribution to genetic risk is small. A clear etiology for sporadic ovarian cancer has not been identified, but risk is affected by reproductive and hormonal factors. Surgery has a unique role in ovarian cancer, as it is used not only for diagnosis and staging but also therapeutically, even in patients with widely disseminated, advanced disease. Ovarian cancer is highly sensitive to chemotherapy drugs, particularly the platinum agents, and most patients will attain a remission with initial treatment. Recent advances in the delivery of chemotherapy using the intraperitoneal route have further improved survival after initial therapy. Although the majority of ovarian cancer patients will respond to initial chemotherapy, most will ultimately develop disease recurrence. Chemotherapy for recurrent disease includes platinum-based, multiagent regimens for women whose disease recurs more than 6 to 12 months after the completion of initial therapy and sequential single agents for those whose disease recurs earlier. New targeted biologic agents, particularly those involved with the vascular endothelial growth factor pathway and those targeting the poly (ADP-ribose) polymerase (PARP) enzyme, hold great promise for improving the outcome of ovarian cancer.

638 citations

Journal ArticleDOI
TL;DR: A previously unrecognized coiled-coil domain within the C terminus of the PKD1 gene product, polycystin, is described and it is demonstrated that it binds specifically to the Cterminus of PKD2.
Abstract: Autosomal dominant polycystic kidney disease (ADPKD) describes a group of at least three genetically distinct disorders with almost identical clinical features that collectively affects 1:1,000 of the population. Affected individuals typically develop large cystic kidneys and approximately one half develop end-stage renal disease by their seventh decade. It has been suggested that the diseases result from defects in interactive factors involved in a common pathway. The recent discovery of the genes for the two most common forms of ADPKD has provided an opportunity to test this hypothesis. We describe a previously unrecognized coiled-coil domain within the C terminus of the PKD1 gene product, polycystin, and demonstrate that it binds specifically to the C terminus of PKD2. Homotypic interactions involving the C terminus of each are also demonstrated. We show that naturally occurring pathogenic mutations of PKD1 and PKD2 disrupt their associations. We have characterized the structural basis of their heterotypic interactions by deletional and site-specific mutagenesis. Our data suggest that PKD1 and PKD2 associate physically in vivo and may be partners of a common signalling cascade involved in tubular morphogenesis.

637 citations


Authors

Showing all 44754 results

NameH-indexPapersCitations
Robert Langer2812324326306
Bert Vogelstein247757332094
Solomon H. Snyder2321222200444
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Hagop M. Kantarjian2043708210208
Mark P. Mattson200980138033
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Aaron R. Folsom1811118134044
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
Daniel R. Weinberger177879128450
David Baker1731226109377
Eliezer Masliah170982127818
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

99% related

Baylor College of Medicine
94.8K papers, 5M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023149
2022622
20216,078
20205,107
20194,444
20183,848