scispace - formally typeset
Search or ask a question
Institution

Johns Hopkins University School of Medicine

HealthcareBaltimore, Maryland, United States
About: Johns Hopkins University School of Medicine is a healthcare organization based out in Baltimore, Maryland, United States. It is known for research contribution in the topics: Population & Cancer. The organization has 44277 authors who have published 79222 publications receiving 4788882 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of animal models of the epilepsies can be found in this paper, where the authors present a review of 50 models for simple partial seizures, including topical convulsants, acute electrical stimulation, cortically implanted metals, cryogenic injury, and complex partial seizures.

618 citations

Journal ArticleDOI
TL;DR: FAS is associated with poor prognosis in breast and prostate cancer, is elaborated into the blood of cancer patients, and its inhibition is selectively cytotoxic to human cancer cells.
Abstract: Fatty acid synthase (FAS), the sole mammalian enzyme capable of de novo fatty acid synthesis, is highly expressed in most human carcinomas. FAS is associated with poor prognosis in breast and prostate cancer, is elaborated into the blood of cancer patients, and its inhibition is selectively cytotoxic to human cancer cells. Thus, FAS and fatty acid metabolism in cancer has become a focus for the potential diagnosis and treatment of cancer.

617 citations

Journal Article
TL;DR: It is suggested that p15INK4B is inactivated selectively in leukemias and gliomas and seems to constitute an important tumor suppressor gene loss in these neoplasms.
Abstract: The recently identified cyclin-dependent kinase inhibitor p15INK4B is localized to a region on chromosome 9p21 frequently deleted in human tumors. Previous evidence has pointed to a related gene, p16INK4A, as the principal target of this deletion. We report that in gliomas and, to a striking degree, in leukemias, the p15 gene is commonly inactivated in association with promoter region hypermethylation involving multiple sites in a 5'-CpG island. In some gliomas and all of the primary leukemias, this event occurs without alteration of the adjacent gene, p16INK4A. In other tumors, including lung, head and neck, breast, prostate, and colon cancer, inactivation of p15INK4B occurs only rarely and only with concomitant inactivation of p16. Aberrant methylation of p15INK4B is associated with transcriptional loss of this gene. Treatment with the demethylating agent 5-aza-2'-deoxycytidine leads to re-expression of p15 mRNA. In selected leukemia cell lines, p15 inactivation correlates with known resistance to the growth-suppressive effects of transforming growth factor-beta. These results suggest that p15INK4B is inactivated selectively in leukemias and gliomas and seems to constitute an important tumor suppressor gene loss in these neoplasms.

617 citations

Journal ArticleDOI
TL;DR: PD-1 regulates selection and survival in the GC, affecting the quantity and quality of long-lived PCs, and the effect was selective, as remaining PCs had greater affinity for antigen.
Abstract: Memory B and plasma cells (PCs) are generated in the germinal center (GC). Because follicular helper T cells (T(FH) cells) have high expression of the immunoinhibitory receptor PD-1, we investigated the role of PD-1 signaling in the humoral response. We found that the PD-1 ligands PD-L1 and PD-L2 were upregulated on GC B cells. Mice deficient in PD-L2 (Pdcd1lg2(-/-)), PD-L1 and PD-L2 (Cd274(-/-)Pdcd1lg2(-/-)) or PD-1 (Pdcd1(-/-)) had fewer long-lived PCs. The mechanism involved more GC cell death and less T(FH) cell cytokine production in the absence of PD-1; the effect was selective, as remaining PCs had greater affinity for antigen. PD-1 expression on T cells and PD-L2 expression on B cells controlled T(FH) cell and PC numbers. Thus, PD-1 regulates selection and survival in the GC, affecting the quantity and quality of long-lived PCs.

616 citations

Journal ArticleDOI
TL;DR: Pima subjects homozygous for the Trp64Arg beta 3-adrenergic-receptor mutation have an earlier onset of NIDDM and tend to have a lower resting metabolic rate.
Abstract: Background The β3-adrenergic receptor is expressed in visceral adipose tissue and is thought to contribute to the regulation of the resting metabolic rate and lipolysis. Methods To investigate whether mutations in the gene for the β3-adrenergic receptor predispose patients to obesity and non-insulin-dependent diabetes mellitus (NIDDM), we studied this gene in 10 Pima Indians by analysis of single-stranded conformational polymorphisms and dideoxy sequence analysis. Association studies were performed in 642 Pima subjects (390 with NIDDM and 252 without NIDDM). Results A missense mutation was identified in the gene for the β3-adrenergic receptor that results in the replacement of tryptophan by arginine (Trp64Arg) in the first intracellular loop of the receptor. This mutation was detected with allelic frequencies of 0.31 in Pima Indians, 0.13 in 62 Mexican Americans, 0.12 in 49 blacks, and 0.08 in 48 whites in the United States. Among Pimas, the frequency of the Trp64Arg mutation was similar in nondiabetic an...

616 citations


Authors

Showing all 44754 results

NameH-indexPapersCitations
Robert Langer2812324326306
Bert Vogelstein247757332094
Solomon H. Snyder2321222200444
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Hagop M. Kantarjian2043708210208
Mark P. Mattson200980138033
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Aaron R. Folsom1811118134044
Gonçalo R. Abecasis179595230323
Jie Zhang1784857221720
Daniel R. Weinberger177879128450
David Baker1731226109377
Eliezer Masliah170982127818
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

99% related

Baylor College of Medicine
94.8K papers, 5M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

98% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023149
2022622
20216,078
20205,107
20194,444
20183,848