Institution
Jožef Stefan Institute
Facility•Ljubljana, Slovenia•
About: Jožef Stefan Institute is a(n) facility organization based out in Ljubljana, Slovenia. It is known for research contribution in the topic(s): Liquid crystal & Dielectric. The organization has 3828 authors who have published 12614 publication(s) receiving 291025 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
University of Udine1, University of Lugano2, École Polytechnique Fédérale de Lausanne3, Leipzig University4, University of Paris5, University of North Texas6, Princeton University7, National Research Council8, International School for Advanced Studies9, Cornell University10, University of Lincoln11, University of Milan12, École Polytechnique13, International Centre for Theoretical Physics14, University of Paderborn15, University of Oxford16, Jožef Stefan Institute17, University of Padua18, Sapienza University of Rome19, Vietnam Academy of Science and Technology20, University of British Columbia21, University of Lorraine22, Centre national de la recherche scientifique23, University of Zurich24, École Normale Supérieure25, Université Paris-Saclay26, Wake Forest University27, Temple University28
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
2,724 citations
[...]
Los Alamos National Laboratory1, Brookhaven National Laboratory2, Oak Ridge National Laboratory3, Rensselaer Polytechnic Institute4, Argonne National Laboratory5, Lawrence Livermore National Laboratory6, International Atomic Energy Agency7, National Institute of Standards and Technology8, Japan Atomic Energy Agency9, Idaho National Laboratory10, Jožef Stefan Institute11, Nuclear Research and Consultancy Group12, University of Vienna13
TL;DR: The ENDF/B-VII.1 library as mentioned in this paper is the most widely used data set for nuclear data analysis and has been updated several times over the last five years. But the most recent version of the ENDF-B-VI.0 library is based on the JENDL-4.0 standard.
Abstract: The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment.
The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary.
Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors, and improvements are evident. Maxwellian-averaged capture cross sections at 30 keV are also provided for astrophysics applications.
We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [M. B. Chadwick, P. Obložinský, M. Herman, N. M. Greene, R. D. McKnight, D. L. Smith, P. G. Young, R. E. MacFarlane, G. M. Hale, S. C. Frankle, A. C. Kahler, T. Kawano, R. C. Little, D. G. Madland, P. Moller, R. D. Mosteller, P. R. Page, P. Talou, H. Trellue, M. C. White, W. B. Wilson, R. Arcilla, C. L. Dunford, S. F. Mughabghab, B. Pritychenko, D. Rochman, A. A. Sonzogni, C. R. Lubitz, T. H. Trumbull, J. P. Weinman, D. A. Br, D. E. Cullen, D. P. Heinrichs, D. P. McNabb, H. Derrien, M. E. Dunn, N. M. Larson, L. C. Leal, A. D. Carlson, R. C. Block, J. B. Briggs, E. T. Cheng, H. C. Huria, M. L. Zerkle, K. S. Kozier, A. Courcelle, V. Pronyaev, and S. C. van der Marck, “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nuclear Data Sheets 107, 2931 (2006)].
1,865 citations
[...]
TL;DR: In this article, a review of the basic ideas and techniques of spectral density functional theory which are currently used in electronic structure calculations of strongly correlated materials where the one-dimensional electron description breaks down is presented.
Abstract: We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly{correlated materials where the one{electron description breaks down. We illustrate the method with several examples where interactions play a dominant role: systems near metal{insulator transition, systems near volume collapse transition, and systems with local moments.
1,644 citations
[...]
TL;DR: XCrySDen is presented, a crystalline- and molecular-structure visualisation program, which aims at display of isosurfaces and contours, which can be superimposed on crystalline structures and interactively rotated and manipulated.
Abstract: The role of computer graphics in different aspects of simulating matter on the atomic scale is discussed. The computer graphics is useful in specifying and examining chemical structures, since it is nowadays possible to study––with density functional theory––complex systems containing up to a few hundreds in-equivalent atoms. Furthermore, computer graphics is also an indispensable tool in analysing computed data and facilitates interpretation of results. In this context XCrySDen ( http://www.xcrysden.org/ ) is presented, a crystalline- and molecular-structure visualisation program, which aims at display of isosurfaces and contours, which can be superimposed on crystalline structures and interactively rotated and manipulated. Another aspect of computer utilisation in simulations that takes advantage of the computer’s graphics capabilities, is that it provides intuitive graphical user interfaces for the simulation setup. It is demonstrated how such interfaces are easily built using the developed GUIB software ( http://www-k3.ijs.si/kokalj/guib/ ).
1,453 citations
[...]
University of Udine1, University of Lugano2, École Polytechnique Fédérale de Lausanne3, Leipzig University4, University of Paris5, University of North Texas6, Princeton University7, National Research Council8, International School for Advanced Studies9, Cornell University10, University of Lincoln11, University of Milan12, École Polytechnique13, International Centre for Theoretical Physics14, University of Paderborn15, University of Oxford16, Jožef Stefan Institute17, University of Padua18, Sapienza University of Rome19, Vietnam Academy of Science and Technology20, University of British Columbia21, Centre national de la recherche scientifique22, University of Lorraine23, École Normale Supérieure24, University of Zurich25, Université Paris-Saclay26, Wake Forest University27, Temple University28
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
1,406 citations
Authors
Showing all 3828 results
Name | H-index | Papers | Citations |
---|---|---|---|
Vladimir Cindro | 129 | 1157 | 82000 |
Igor Mandić | 128 | 1065 | 79498 |
Jure Leskovec | 127 | 473 | 89014 |
Matej Orešič | 82 | 352 | 26830 |
P. Križan | 78 | 749 | 26408 |
Jose Miguel Miranda | 76 | 336 | 18080 |
Vito Turk | 74 | 271 | 23205 |
Andrii Tykhonov | 73 | 270 | 24864 |
Masashi Yokoyama | 73 | 310 | 18817 |
Kostya Ostrikov | 72 | 763 | 21442 |
M. Starič | 71 | 530 | 19136 |
Boris Turk | 67 | 231 | 27006 |
Bostjan Kobe | 66 | 279 | 17592 |
Jure Zupan | 61 | 228 | 12054 |
Sepp D. Kohlwein | 60 | 160 | 16245 |