scispace - formally typeset
Search or ask a question
Institution

Jožef Stefan Institute

FacilityLjubljana, Slovenia
About: Jožef Stefan Institute is a facility organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Liquid crystal & Dielectric. The organization has 3828 authors who have published 12614 publications receiving 291025 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Human cathepsin C appears to differ qualitatively from other cysteine proteinases of different origin, explained by a sequential cooperative interaction model, where an enzyme molecule can bind up to four substrate molecules but where only the binary enzyme-substrate complex is catalytically active.

116 citations

Journal ArticleDOI
TL;DR: The second largest Hg mine in the world, the Idrija Mine, ceased operation in 1995, but still delivers large quantities of Hg downstream including into the northern Adriatic Sea, 100 kilometres away.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the Anderson impurity is coupled to superconducting and normal-state leads to obtain a phase diagram for an arbitrary ratio, which allows us to analyze relevant experimental scenarios, such as parity crossings as well as Kondo features induced by the normal lead.
Abstract: Hybrid semiconductor-superconductor systems are interesting melting pots where various fundamental effects in condensed-matter physics coexist. For example, when a quantum dot is coupled to a superconducting electrode two very distinct phenomena, superconductivity and the Kondo effect, compete. As a result of this competition, the system undergoes a quantum phase transition when the superconducting gap $\ensuremath{\Delta}$ is of the order of the Kondo temperature ${T}_{K}$. The underlying physics behind such transition ultimately relies on the physics of the Anderson model where the standard metallic host is replaced by a superconducting one, namely the physics of a (quantum) magnetic impurity in a superconductor. A characteristic feature of this hybrid system is the emergence of subgap bound states, the so-called Yu-Shiba-Rusinov (YSR) states, which cross zero energy across the quantum phase transition, signaling a switching of the fermion parity and spin (doublet or singlet) of the ground state. Interestingly, similar hybrid devices based on semiconducting nanowires with spin-orbit coupling may host exotic zero-energy bound states with Majorana character. Both parity crossings and Majorana bound states (MBSs) are experimentally marked by zero-bias anomalies in transport, which are detected by coupling the hybrid device with an extra normal contact. We here demonstrate theoretically that this extra contact, usually considered as a nonperturbing tunneling weak probe, leads to nontrivial effects. This conclusion is supported by numerical renormalization-group calculations of the phase diagram of an Anderson impurity coupled to both superconducting and normal-state leads. We obtain this phase diagram for an arbitrary ratio $\frac{\ensuremath{\Delta}}{{T}_{K}}$, which allows us to analyze relevant experimental scenarios, such as parity crossings as well as Kondo features induced by the normal lead, as this ratio changes. Spectral functions at finite temperatures and magnetic fields, which can be directly linked to experimental tunneling transport characteristics, show zero-energy anomalies irrespective of whether the system is in the doublet or singlet regime. We also derive the analytical condition for the occurrence of Zeeman-induced fermion-parity switches in the presence of interactions which bears unexpected similarities with the condition for emergent MBSs in nanowires.

116 citations

Journal ArticleDOI
TL;DR: This paper shows that hubness, i.e., the tendency of high-dimensional data to contain points (hubs) that frequently occur in k-nearest-neighbor lists of other points, can be successfully exploited in clustering, and proposes several hubness-based clustering algorithms.
Abstract: High-dimensional data arise naturally in many domains, and have regularly presented a great challenge for traditional data mining techniques, both in terms of effectiveness and efficiency. Clustering becomes difficult due to the increasing sparsity of such data, as well as the increasing difficulty in distinguishing distances between data points. In this paper, we take a novel perspective on the problem of clustering high-dimensional data. Instead of attempting to avoid the curse of dimensionality by observing a lower dimensional feature subspace, we embrace dimensionality by taking advantage of inherently high-dimensional phenomena. More specifically, we show that hubness, i.e., the tendency of high-dimensional data to contain points (hubs) that frequently occur in k-nearest-neighbor lists of other points, can be successfully exploited in clustering. We validate our hypothesis by demonstrating that hubness is a good measure of point centrality within a high-dimensional data cluster, and by proposing several hubness-based clustering algorithms, showing that major hubs can be used effectively as cluster prototypes or as guides during the search for centroid-based cluster configurations. Experimental results demonstrate good performance of our algorithms in multiple settings, particularly in the presence of large quantities of noise. The proposed methods are tailored mostly for detecting approximately hyperspherical clusters and need to be extended to properly handle clusters of arbitrary shapes.

115 citations

Book ChapterDOI
03 Oct 2005
TL;DR: Two techniques for topic discovery in collections of text documents (Latent Semantic Indexing and K-Means clustering) are reviewed and how they are integrated into a system for semi-automatic topic ontology construction is presented.
Abstract: In this paper, we review two techniques for topic discovery in collections of text documents (Latent Semantic Indexing and K-Means clustering) and present how we integrated them into a system for semi-automatic topic ontology construction. The OntoGen system offers support to the user during the construction process by suggesting topics and analyzing them in real time. It suggests names for the topics in two alternative ways both based on extracting keywords from a set of documents inside the topic. The first set of descriptive keyword is extracted using document centroid vectors, while the second set of distinctive keyword is extracted from the SVM classification model dividing documents in the topic from the neighboring documents.

115 citations


Authors

Showing all 3879 results

NameH-indexPapersCitations
Vladimir Cindro129115782000
Igor Mandić128106579498
Jure Leskovec12747389014
Matej Orešič8235226830
P. Križan7874926408
Jose Miguel Miranda7633618080
Vito Turk7427123205
Andrii Tykhonov7327024864
Masashi Yokoyama7331018817
Kostya Ostrikov7276321442
M. Starič7153019136
Boris Turk6723127006
Bostjan Kobe6627917592
Jure Zupan6122812054
Mario Sannino6028117144
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202331
202268
2021755
2020770
2019653
2018576