scispace - formally typeset
Search or ask a question
Institution

Jožef Stefan Institute

FacilityLjubljana, Slovenia
About: Jožef Stefan Institute is a facility organization based out in Ljubljana, Slovenia. It is known for research contribution in the topics: Liquid crystal & Dielectric. The organization has 3828 authors who have published 12614 publications receiving 291025 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of polyethyleneimine (PEI) as a corrosion inhibitor for ASTM 420 stainless steel in 3% aqueous NaCl solution was studied.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and doublestranded DNA bacteriophages.
Abstract: We summarize some aspects of electrostatic interactions in the context of viruses. A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranded DNA bacteriophages. The two types of viruses differ crucially in the spatial distribution of their genome charge which leads to essential differences in their free energies, depending on the capsid size and total charge in a quite different fashion. Differences in the free energies are trailed by the corresponding characteristics and variations in the osmotic pressure between the inside of the virus and the external bathing solution.

113 citations

Journal ArticleDOI
TL;DR: In this paper, a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces.
Abstract: General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH2 groups per nm2. The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH2) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH2) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

113 citations

Journal ArticleDOI
TL;DR: A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranding DNA bacteriophages.
Abstract: We summarize some aspects of electrostatic interactions in the context of viruses. A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranded DNA bacteriophages. The two types of viruses differ crucially in the spatial distribution of their genome charge which leads to essential differences in their free energies, depending on the capsid size and total charge in a quite different fashion. Differences in the free energies are trailed by the corresponding characteristics and variations in the osmotic pressure between the inside of the virus and the external bathing solution.

113 citations


Authors

Showing all 3879 results

NameH-indexPapersCitations
Vladimir Cindro129115782000
Igor Mandić128106579498
Jure Leskovec12747389014
Matej Orešič8235226830
P. Križan7874926408
Jose Miguel Miranda7633618080
Vito Turk7427123205
Andrii Tykhonov7327024864
Masashi Yokoyama7331018817
Kostya Ostrikov7276321442
M. Starič7153019136
Boris Turk6723127006
Bostjan Kobe6627917592
Jure Zupan6122812054
Mario Sannino6028117144
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

91% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202331
202268
2021755
2020770
2019653
2018576