scispace - formally typeset
Search or ask a question
Institution

KAIST

EducationDaejeon, South Korea
About: KAIST is a education organization based out in Daejeon, South Korea. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 35562 authors who have published 77661 publications receiving 1852854 citations. The organization is also known as: Korea Advanced Institute of Science and Technology & KAIST university.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Abstract: Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations. Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

3,314 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications, and find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socioeconomic narrative, and (3) the stringency of the target.
Abstract: This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO 2 emissions of the baseline scenarios range from about 25 GtCO 2 to more than 120 GtCO 2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m 2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).

2,644 citations

Journal ArticleDOI
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Abstract: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Moller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr_2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

2,396 citations

Journal ArticleDOI
12 Jul 2001-Nature
TL;DR: A general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters is described, which gives rise to promising electrocatalytic activity for oxygen reduction and could prove to be practically relevant for fuel-cell technologies.
Abstract: Nanostructured carbon materials are potentially of great technological interest for the development of electronic1,2, catalytic3,4 and hydrogen-storage systems5,6. Here we describe a general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters (typically 6 nanometres inside and 9 nanometres outside). These structures are formed by using ordered mesoporous silicas as templates, the removal of which leaves a partially ordered graphitic framework. The resulting material supports a high dispersion of platinum nanoparticles, exceeding that of other common microporous carbon materials (such as carbon black, charcoal and activated carbon fibres). The platinum cluster diameter can be controlled to below 3 nanometres, and the high dispersion of these metal clusters gives rise to promising electrocatalytic activity for oxygen reduction, which could prove to be practically relevant for fuel-cell technologies. These nanomaterials can also be prepared in the form of free-standing films by using ordered silica films as the templates.

2,352 citations

Journal ArticleDOI
TL;DR: O.R.T. and Z.L.K. as discussed by the authors acknowledge donors of the Petroleum Research Fund administered by the American Chemical Society (ACS), and thank CREST, JST for supports.
Abstract: R.R. is thankful for financial support by Korean Research Foundation (1998-010-180). M.J. and M.K. acknowledge donors of the Petroleum Research Fund administered by the American Chemical Society. O.T. and Z.L. thank CREST, JST for supports.

2,318 citations


Authors

Showing all 35844 results

NameH-indexPapersCitations
Robert Langer2812324326306
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Kari Alitalo174817114231
Yury Gogotsi171956144520
Omar M. Yaghi165459163918
Hannes Jung1592069125069
Yongsun Kim1562588145619
Xiang Zhang1541733117576
William A. Goddard1511653123322
Jongmin Lee1502257134772
J. Fraser Stoddart147123996083
Bernhard O. Palsson14783185051
A. Paul Alivisatos146470101741
Taeghwan Hyeon13956375814
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023108
2022480
20214,169
20204,412
20194,204
20183,988