scispace - formally typeset
Search or ask a question

Showing papers by "Karlsruhe Institute of Technology published in 2008"


Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations


Journal ArticleDOI
TL;DR: This work introduces two intuitive and general metrics to allow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy in recognizing object configurations and their ability to consistently label objects over time.
Abstract: Simultaneous tracking of multiple persons in real-world environments is an active research field and several approaches have been proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of multiple object trackers still makes it hard to compare their results. In this work, we introduce two intuitive and general metrics to allow for objective comparison of tracker characteristics, focusing on their precision in estimating object locations, their accuracy in recognizing object configurations and their ability to consistently label objects over time. These metrics have been extensively used in two large-scale international evaluations, the 2006 and 2007 CLEAR evaluations, to measure and compare the performance of multiple object trackers for a wide variety of tracking tasks. Selected performance results are presented and the advantages and drawbacks of the presented metrics are discussed based on the experience gained during the evaluations.

2,286 citations


Journal ArticleDOI
TL;DR: A review of second generation biodiesel production systems using microalgae can be found in this paper, where the main advantages of second-generation microalgal systems are that they: (1) have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) can couple CO2-neutral fuel production with CO2 sequestration: (
Abstract: The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (∼66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.

2,254 citations


Journal ArticleDOI
TL;DR: Herwig++ as mentioned in this paper is a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, leptonhadron and hadron-hadron collisions, with special emphasis on the correct description of radiation from heavy particles.
Abstract: In this paper we describe Herwig++ version 2.3, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron collisions. A number of important hard scattering processes are available, together with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. The simulation of Beyond the Standard Model (BSM) physics includes a range of models and allows new models to be added by encoding the Feynman rules of the model. The parton-shower approach is used to simulate initial- and final-state QCD radiation, including colour coherence effects, with special emphasis on the correct description of radiation from heavy particles. The underlying event is simulated using an eikonal multiple parton-parton scattering model. The formation of hadrons from the quarks and gluons produced in the parton shower is described using the cluster hadronization model. Hadron decays are simulated using matrix elements, where possible including spin correlations and off-shell effects. Comment: 153 pages, program and additional information available from http://projects.hepforge.org/herwig . Updated description to Herwig++ version 2.3 and added one author

1,829 citations


Journal ArticleDOI
TL;DR: An overview of the field of vehicular ad hoc networks is given, providing motivations, challenges, and a snapshot of proposed solutions.
Abstract: There has been significant interest and progress in the field of vehicular ad hoc networks over the last several years. VANETs comprise vehicle-to-vehicle and vehicle-to-infrastructure communications based on wireless local area network technologies. The distinctive set of candidate applications (e.g., collision warning and local traffic information for drivers), resources (licensed spectrum, rechargeable power source), and the environment (e.g., vehicular traffic flow patterns, privacy concerns) make the VANET a unique area of wireless communication. This article gives an overview of the field, providing motivations, challenges, and a snapshot of proposed solutions.

1,545 citations


Journal ArticleDOI
TL;DR: Usetox as discussed by the authors is a scientific consensus model that contains only the most influential model elements and is used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment.
Abstract: In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)–Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results—in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models’ results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. The precision of the new characterisation factors (CFs) is within a factor of 100–1,000 for human health and 10–100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC’s Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.

1,304 citations


Journal ArticleDOI
TL;DR: The conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts is proved and an Integer Linear Programming formulation is given.
Abstract: Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, particularly in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.

1,201 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare different procedures for combining fixed-order tree-level matrix-element generators with parton showers and find that although similar results are obtained in all cases, there are important differences.
Abstract: We compare different procedures for combining fixed-order tree-level matrix-element generators with parton showers. We use the case of W-production at the Tevatron and the LHC to compare different implementations of the so-called CKKW and MLM schemes using different matrix-element generators and different parton cascades. We find that although similar results are obtained in all cases, there are important differences.

1,008 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyse the impact of renewable electricity generation on the electricity market in Germany and show that the financial volume of the price reduction is considerable, which gives rise to a distributional effect which creates savings for the demand side by reducing generator profits.

910 citations


BookDOI
18 Oct 2008
TL;DR: This paper presents a meta-modelling approach to Multiobjective Optimization called " Meta-Modeling in Multiobjectives Optimization", which considers the role of explicit and implicit preferences in the design of the optimizer.
Abstract: Basics on Multiobjective Optimization.- to Multiobjective Optimization: Noninteractive Approaches.- to Multiobjective Optimization: Interactive Approaches.- to Evolutionary Multiobjective Optimization.- Recent Interactive and Preference-Based Approaches.- Interactive Multiobjective Optimization Using a Set of Additive Value Functions.- Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization.- Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization.- Interactive Multiobjective Evolutionary Algorithms.- Visualization of Solutions.- Visualization in the Multiple Objective Decision-Making Framework.- Visualizing the Pareto Frontier.- Modelling, Implementation and Applications.- Meta-Modeling in Multiobjective Optimization.- Real-World Applications of Multiobjective Optimization.- Multiobjective Optimization Software.- Parallel Approaches for Multiobjective Optimization.- Quality Assessment, Learning, and Future Challenges.- Quality Assessment of Pareto Set Approximations.- Interactive Multiobjective Optimization from a Learning Perspective.- Future Challenges.

761 citations


Book ChapterDOI
30 May 2008
TL;DR: CHs can be combined with many other route planning techniques, leading to improved performance for many-to-many routing, transit-node routing, goal-directed routing or mobile and dynamic scenarios, and a hierarchical query algorithm using bidirectional shortest-path search is obtained.
Abstract: We present a route planning technique solely based on the concept of node contraction. The nodes are first ordered by 'importance'. A hierarchy is then generated by iteratively contracting the least important node. Contracting a node υ means replacing shortest paths going through v by shortcuts. We obtain a hierarchical query algorithm using bidirectional shortest-path search. The forward search uses only edges leading to more important nodes and the backward search uses only edges coming from more important nodes. For fastest routes in road networks, the graph remains very sparse throughout the contraction process using rather simple heuristics for ordering the nodes. We have five times lower query times than the best previous hierarchical Dijkstra-based speedup techniques and a negative space overhead, i.e., the data structure for distance computation needs less space than the input graph. CHs can be combined with many other route planning techniques, leading to improved performance for many-to-many routing, transit-node routing, goal-directed routing or mobile and dynamic scenarios.

Journal ArticleDOI
J. Abraham, P. Abreu1, Marco Aglietta2, C. Aguirre  +485 moreInstitutions (74)
TL;DR: The energy spectrum of cosmic rays above 2.5 x 10;{18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described and the hypothesis of a single power law is rejected with a significance greater than 6 standard deviations.
Abstract: The energy spectrum of cosmic rays above 2.5 x 10;{18} eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index gamma of the particle flux, J proportional, variantE;{-gamma}, at energies between 4 x 10;{18} eV and 4 x 10;{19} eV is 2.69+/-0.02(stat)+/-0.06(syst), steepening to 4.2+/-0.4(stat)+/-0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

Proceedings ArticleDOI
25 Sep 2008
TL;DR: This paper reviews recent advances of Cloud computing, identifies the concepts and characters of scientific Clouds, and finally presents an example of scientific Cloud for data centers.
Abstract: Cloud computing emerges as a new computing paradigm which aims to provide reliable, customized and QoS guaranteed computing dynamic environments for end-users. This paper reviews recent advances of Cloud computing, identifies the concepts and characters of scientific Clouds, and finally presents an example of scientific Cloud for data centers

Journal ArticleDOI
12 Jul 2008-ACS Nano
TL;DR: The designed fabrication procedure is simple, feasible, and universal for a series of oxide and noble metal/oxide HNPs with controlled microstructure and improved performances.
Abstract: A weak acid selective etching strategy was put forward to fabricate oxide-based hollow nanoparticles (HNPs) using core/shell nanostructures of active metal/oxide nanoparticles as sacrificial templates. ZnO-based HNPs, including pure ZnO, Au/ZnO, Pt/ZnO, and Au/Pt/ZnO HNPs with diameter below 50 nm and shell thickness below 6 nm has been first achieved at low temperature. The diameter, thickness, and even sizes of ZnO and noble metal ultrafine crystals of HNPs can be well adjusted by the etching process. Synchronous with the formation of HNPs, the internal metal−semiconductor interfaces can be controllably eliminated (Zn−ZnO) and reconstructed (noble metal−ZnO). Excitingly, such microstructure manipulation has endued them with giant improvements in related performances, including the very strong blue luminescence with enhancement over 3 orders of magnitude for the pure ZnO HNPs and the greatly improved photocatalytic activity for the noble metal/ZnO HNPs. These give them strong potentials in relevant appli...

Book
01 Jan 2008
TL;DR: This KeY book presents deductive verification in an expressive program logic, including two widely-used object-oriented specification languages (OCL and JML) and even an interface to natural language generation.
Abstract: The ultimate goal of program verification is not the theory behind the tools or the tools themselves, but the application of the theory and tools in the software engineering process. Our society relies on the correctness of a vast and growing amount of software. Improving the software engineering process is an important, long-term goal with many steps. Two of those steps are the KeY tool and this KeY book. The material is presented on an advanced level suitable for graduate courses and, of course, active researchers with an interest in verification. The underlying verification paradigm is deductive verification in an expressive program logic. The logic used for reasoning about programs is not a minimalist version suitable for theoretical investigations, but an industrial-strength version. The first-order part is equipped with a type system for modelling of object hierarchies, with underspecification, and with various built-in theories. The program logic covers full Java Card (plus a bit more such as multi-dimensional arrays, characters, and long integers). A lot of emphasis is thereby put on specification, including two widely-used object-oriented specification languages (OCL and JML) and even an interface to natural language generation. The generation of proof obligations from specified code is discussed at length. The book is rounded off by two substantial case studies that are included and presented in detail.

Journal ArticleDOI
TL;DR: In this article, the impedance of Ni/8 yttria-stabilized zirconia (YSZ) single cells was characterized in a broad measuring range of temperature and air/fuel gas composition.
Abstract: The impedance of anode-supported single cells [Ni/8 yttria-stabilized zirconia (YSZ) anode; La 0.58 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathode; 8YSZ electrolyte; area 1 cm 2 ] was characterized in a broad measuring range of temperature and air/fuel gas composition. The data has been analyzed by calculating the distribution function of relaxation times (DRTs). DRT computations enabled us to separate five different loss mechanisms occurring inside the cathode and anode without the need of an equivalent circuit. Two processes exhibit a systematic dependency on changes in the oxygen partial pressure of the cathode gas and thus can be attributed to diffusional and electrochemical losses on the cathode side. The remaining three processes are very sensitive to changes in the fuel gas but are not affected by variations of the cathode gas. These resistances are classified as a gas diffusion polarization within the anode-substrate and as an electro-oxidation reaction at the triple-phase boundary, respectively.

Journal ArticleDOI
TL;DR: In this paper, Jin et al. considered purely stress-driven interactions between 60° non-screw lattice dislocation and coherent twin boundary (CTB) via molecular dynamics simulations for three face-centered cubic (fcc) metals, Cu, Ni and Al.

Journal ArticleDOI
TL;DR: F-actin speed is a fundamental regulator of traction force at FAs during cell migration, independent of changes in FA protein density, age, stress magnitude, assembly/disassembly status, or subcellular position induced by pleiotropic perturbations to Rho family guanosine triphosphatase signaling and myosin II activity.
Abstract: How focal adhesions (FAs) convert retrograde filamentous actin (F-actin) flow into traction stress on the extracellular matrix to drive cell migration is unknown. Using combined traction force and fluorescent speckle microscopy, we observed a robust biphasic relationship between F-actin speed and traction force. F-actin speed is inversely related to traction stress near the cell edge where FAs are formed and F-actin motion is rapid. In contrast, larger FAs where the F-actin speed is low are marked by a direct relationship between F-actin speed and traction stress. We found that the biphasic switch is determined by a threshold F-actin speed of 8–10 nm/s, independent of changes in FA protein density, age, stress magnitude, assembly/disassembly status, or subcellular position induced by pleiotropic perturbations to Rho family guanosine triphosphatase signaling and myosin II activity. Thus, F-actin speed is a fundamental regulator of traction force at FAs during cell migration.

Journal ArticleDOI
TL;DR: In this paper, the strong coupling constant in perturbative QCD has been shown to be stable with respect to the decay rate of the Z boson and the lepton into hadrons.
Abstract: Using recently developed methods for the evaluation of five-loop amplitudes in perturbative QCD, corrections of order {alpha}{sub s}{sup 4} for the nonsinglet part of the cross section for electron-positron annihilation into hadrons and for the decay rates of the Z boson and the {tau} lepton into hadrons are evaluated. The new terms lead to a significant stabilization of the perturbative series, to a reduction of the theory uncertainly in the strong coupling constant {alpha}{sub s}, as extracted from these measurements, and to a small shift of the central value, moving the two central values closer together. The agreement between two values of {alpha}{sub s} measured at vastly different energies constitutes a striking test of asymptotic freedom. Combining the results from Z and {tau} decays we find {alpha}{sub s}(M{sub Z})=0.1198{+-}0.0015 as one of the most precise and presently only result for the strong coupling constant in order {alpha}{sub s}{sup 4}.

Journal ArticleDOI
J. Abraham1, P. Abreu2, Marco Aglietta3, Marco Aglietta4  +480 moreInstitutions (79)
TL;DR: In this paper, the Pierre Auger Observatory data was used to confirm the anisotropy of the arrival direction of the highest-energy cosmic rays with the highest energy, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) at a confidence level of more than 99%.

Journal ArticleDOI
TL;DR: In this paper, the influence of tree planting with different tree crown porosity was investigated and the results obtained in this work by combining wind tunnel experiments and CFD based simulations suggest ways to obtain quantitative information for assessment, planning and implementation of exposure mitigation using trees in urban street canyons.

Journal ArticleDOI
TL;DR: In this paper, the authors present an update of the theoretical predictions for the cross section of top-quark pair production at Tevatron and LHC and employ improvements due to soft-gluon resummation at next-to-next-to leading logarithmic accuracy.
Abstract: We present an update of the theoretical predictions for the cross section of top-quark pair production at Tevatron and LHC. In particular, we employ improvements due to soft-gluon resummation at next-to-next-to-leading logarithmic accuracy. We expand the resummed results and derive analytical finite-order cross sections through next-to-next-to-leading order which are exact in all logarithmically enhanced terms near threshold. These results are the best present estimates for the top-quark pair production cross section. We investigate the scale dependence as well as the sensitivity on the parton luminosities.

Journal ArticleDOI
TL;DR: In this paper, the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions, and the numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV).

Journal ArticleDOI
TL;DR: This tutorial review presents recent major advances in the field of oxa-Michael reactions and applications in the total synthesis of complex natural products.
Abstract: In marked contrast to Michael reactions, oxa-Michael reactions have not been used as standard transformations in organic synthesis until quite recently. This was mainly due to a lack of reactivity and selectivity, although the potential products of such reactions are valuable intermediates. This tutorial review presents recent major advances in the field of oxa-Michael (sometimes called oxo-Michael or oxy-Michael) reactions and applications in the total synthesis of complex natural products.

Journal ArticleDOI
TL;DR: In this article, the authors present a tractable stochastic equilibrium model reflecting stylized features of the EU ETS and analyze the resulting CO2 spot price dynamics, showing that CO2 prices do not have to follow any seasonal patterns, discounted prices should possess the martingale property, and an adequate CO2 price process should exhibit a time and price-dependent volatility structure.

Journal ArticleDOI
TL;DR: In this paper, a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry was proposed for spin-polarized supercurrents.
Abstract: Interfaces between materials with differently ordered phases present unique opportunities to study fundamental problems in physics. One example is the interface between a singlet superconductor and a half-metallic ferromagnet, where Cooper pairing occurs between electrons with opposite spin on the superconducting side, whereas the other exhibits 100% spin polarization. The recent surprising observation of a supercurrent through half-metallic CrO2 therefore requires a mechanism for conversion between unpolarized and completely spin-polarized supercurrents. Here, we suggest a conversion mechanism based on electron spin precession together with triplet-pair rotation at interfaces with broken spin-rotation symmetry. In the diffusive limit (short mean free path), the triplet supercurrent is dominated by inter-related odd-frequency s-wave and even-frequency p-wave pairs. In the crossover to the ballistic limit, further symmetry components become relevant. The interface region exhibits a superconducting state of mixed-spin pairs with highly unusual symmetry properties that open up new perspectives for exotic Josephson devices.

Journal ArticleDOI
TL;DR: A novel electro-optic silicon-based modulator with a bandwidth of 78GHz, a drive voltage amplitude of 1V and a length of only 80 microm is proposed, which can allow 100Gbit/s transmission and can be achieved by exploiting a combination of several physical effects.
Abstract: A novel electro-optic silicon-based modulator with a bandwidth of 78GHz, a drive voltage amplitude of 1V and a length of only 80µm is proposed. Such record data allow 100Gbit/s transmission and can be achieved by exploiting a combination of several physical effects. First, we rely on the fast and strong nonlinearities of polymers infiltrated into silicon, rather than on the slower free-carrier effect in silicon. Second, we use a Mach-Zehnder interferometer with slotted slow-light waveguides for minimizing the modulator length, but nonetheless providing a long interaction time for modulation field and optical mode. Third, with this short modulator length we avoid bandwidth limitations by RC time constants. The slow-light waveguides are based on a photonic crystal. A polymer-filled narrow slot in the waveguide center forms the interaction region, where both the optical mode and the microwave modulation field are strongly confined to. The waveguides are designed to have a low optical group velocity and negligible dispersion over a 1THz bandwidth. With an adiabatic taper we significantly enhance the coupling to the slow light mode. The feasibility of broadband slow-light transmission and efficient taper coupling has been previously demonstrated by us with calculations and microwave model experiments, where fabrication-induced disorder of the photonic crystal was taken into account.

Journal ArticleDOI
TL;DR: In this paper, a high-resolution impedance study of the hydrogen oxidation in Ni/8YSZ (yttria-stabilized zirconia) cermet anodes has been realized in consideration of a broad range of operating conditions (temperature and partial pressure of fuel gas components H 2, H 2 O, N 2, He).
Abstract: A high-resolution impedance study of the hydrogen oxidation in Ni/8YSZ (yttria-stabilized zirconia) cermet anodes has been realized in consideration of a broad range of operating conditions (temperature and partial pressure of fuel gas components H 2 , H 2 O, N 2 , He). A major problem in this respect concerns the origin and physical interpretation of empirical equivalent circuits used to fit the experimental data. We applied a two-stage approach for the evaluation of the impedance data: (i) at first, by the deconvolution of a distribution function of relaxation times (DRT), four different processes and their characteristic relaxation times have been identified. Two processes at frequencies < 1 kHz represent a gas-conversion process or, respectively, a gas diffusion, whereas two processes at higher frequencies (2-30 kHz) are associated with the electro-oxidation of hydrogen at active sites, including the charge transfer reaction and the ionic transport. (ii) Subsequently, the last mentioned processes were fitted to a "transmission line" model describing the electronic and ionic transport properties of the Ni/8YSZ cermet. The high resolution of the DRT combined with the numeric accuracy of the complex nonlinear least square (CNLS) fit enabled us to determine (i) the effective ionic conductivity of the Ni/8YSZ cermet, (ii) the spatial extension of the electrochemically active area adjacent to the electrolyte/electrode interface, and (iii) the charge transfer resistance and its thermal activation energy.

Journal ArticleDOI
TL;DR: It is shown that phytochrome (FphA) is part of a protein complex containing LreA and LreB, two central components of the Neurospora crassa blue-light-sensing system, and it is found that FphA represses sexual development and mycotoxin formation, whereas Lre a and L reB stimulate both.

Journal ArticleDOI
TL;DR: In this paper, a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms was constructed by direct binding of benzene molecules between two Pt electrodes.
Abstract: Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy, and shot noise compared with calculations provide indications for a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0:1–1G0), where the conductance and the number of transmission channels are controlled by the molecule’s orientation at different interelectrode distances.