scispace - formally typeset
Search or ask a question

Showing papers by "Karolinska Institutet published in 2007"


Journal ArticleDOI
TL;DR: Although there was evidence of an off-target effect of torcetrapib, it cannot rule out adverse effects related to CETP inhibition, and the trial was terminated prematurely because of an increased risk of death and cardiac events.
Abstract: Background Inhibition of cholesteryl ester transfer protein (CETP) has been shown to have a substantial effect on plasma lipoprotein levels. We investigated whether torcetrapib, a potent CETP inhibitor, might reduce major cardiovascular events. The trial was terminated prematurely because of an increased risk of death and cardiac events in patients receiving torcetrapib. Methods We conducted a randomized, double-blind study involving 15,067 patients at high cardiovascular risk. The patients received either torcetrapib plus atorvastatin or atorvastatin alone. The primary outcome was the time to the first major cardiovascular event, which was defined as death from coronary heart disease, nonfatal myocardial infarction, stroke, or hospitalization for unstable angina. Results At 12 months in patients who received torcetrapib, there was an increase of 72.1% in high-density lipoprotein cholesterol and a decrease of 24.9% in low-density lipoprotein cholesterol, as compared with baseline (P<0.001 for both compari...

2,832 citations


Journal ArticleDOI
Douglas F. Easton1, Karen A. Pooley1, Alison M. Dunning1, Paul D.P. Pharoah1, Deborah J. Thompson1, Dennis G. Ballinger, Jeffery P. Struewing2, Jonathan J. Morrison1, Helen I. Field1, Robert Luben1, Nicholas J. Wareham1, Shahana Ahmed1, Catherine S. Healey1, Richard Bowman, Kerstin B. Meyer1, Christopher A. Haiman3, Laurence K. Kolonel, Brian E. Henderson3, Loic Le Marchand, Paul Brennan4, Suleeporn Sangrajrang, Valerie Gaborieau4, Fabrice Odefrey4, Chen-Yang Shen5, Pei-Ei Wu5, Hui-Chun Wang5, Diana Eccles6, D. Gareth Evans7, Julian Peto8, Olivia Fletcher9, Nichola Johnson9, Sheila Seal, Michael R. Stratton10, Nazneen Rahman, Georgia Chenevix-Trench11, Georgia Chenevix-Trench12, Stig E. Bojesen13, Børge G. Nordestgaard13, C K Axelsson13, Montserrat Garcia-Closas2, Louise A. Brinton2, Stephen J. Chanock2, Jolanta Lissowska14, Beata Peplonska15, Heli Nevanlinna16, Rainer Fagerholm16, H Eerola16, Daehee Kang17, Keun-Young Yoo17, Dong-Young Noh17, Sei Hyun Ahn18, David J. Hunter19, Susan E. Hankinson19, David G. Cox19, Per Hall20, Sara Wedrén20, Jianjun Liu21, Yen-Ling Low21, Natalia Bogdanova22, Peter Schu¨rmann22, Do¨rk Do¨rk22, Rob A. E. M. Tollenaar23, Catharina E. Jacobi23, Peter Devilee23, Jan G. M. Klijn24, Alice J. Sigurdson2, Michele M. Doody2, Bruce H. Alexander25, Jinghui Zhang2, Angela Cox26, Ian W. Brock26, Gordon MacPherson26, Malcolm W.R. Reed26, Fergus J. Couch27, Ellen L. Goode27, Janet E. Olson27, Hanne Meijers-Heijboer24, Hanne Meijers-Heijboer28, Ans M.W. van den Ouweland24, André G. Uitterlinden24, Fernando Rivadeneira24, Roger L. Milne29, Gloria Ribas29, Anna González-Neira29, Javier Benitez29, John L. Hopper30, Margaret R. E. McCredie31, Margaret R. E. McCredie32, Margaret R. E. McCredie12, Melissa C. Southey30, Melissa C. Southey12, Graham G. Giles33, Chris Schroen30, Christina Justenhoven34, Christina Justenhoven35, Hiltrud Brauch34, Hiltrud Brauch35, Ute Hamann36, Yon-Dschun Ko, Amanda B. Spurdle11, Jonathan Beesley11, Xiaoqing Chen11, _ kConFab37, Arto Mannermaa37, Veli-Matti Kosma37, Vesa Kataja37, Jaana M. Hartikainen37, Nicholas E. Day1, David Cox, Bruce A.J. Ponder1 
28 Jun 2007-Nature
TL;DR: To identify further susceptibility alleles, a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls was conducted, followed by a third stage in which 30 single nucleotide polymorphisms were tested for confirmation.
Abstract: Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2.0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P,1027). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P,0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

2,288 citations


Journal ArticleDOI
TL;DR: In young women who had not been previously infected with HPV-16 or HPV-18, those in the vaccine group had a significantly lower occurrence of high-grade cervical intraepithelial neoplasia related to HPV- 16 or HPV -18 than did those inThe placebo group.
Abstract: BACKGROUND: Human papillomavirus types 16 (HPV-16) and 18 (HPV-18) cause approximately 70% of cervical cancers worldwide. A phase 3 trial was conducted to evaluate a quadrivalent vaccine against HPV types 6, 11, 16, and 18 (HPV-6/11/16/18) for the prevention of high-grade cervical lesions associated with HPV-16 and HPV-18. METHODS: In this randomized, double-blind trial, we assigned 12,167 women between the ages of 15 and 26 years to receive three doses of either HPV-6/11/16/18 vaccine or placebo, administered at day 1, month 2, and month 6. The primary analysis was performed for a per-protocol susceptible population that included 5305 women in the vaccine group and 5260 in the placebo group who had no virologic evidence of infection with HPV-16 or HPV-18 through 1 month after the third dose (month 7). The primary composite end point was cervical intraepithelial neoplasia grade 2 or 3, adenocarcinoma in situ, or cervical cancer related to HPV-16 or HPV-18. RESULTS: Subjects were followed for an average of 3 years after receiving the first dose of vaccine or placebo. Vaccine efficacy for the prevention of the primary composite end point was 98% (95.89% confidence interval [CI], 86 to 100) in the per-protocol susceptible population and 44% (95% CI, 26 to 58) in an intention-to-treat population of all women who had undergone randomization (those with or without previous infection). The estimated vaccine efficacy against all high-grade cervical lesions, regardless of causal HPV type, in this intention-to-treat population was 17% (95% CI, 1 to 31). CONCLUSIONS: In young women who had not been previously infected with HPV-16 or HPV-18, those in the vaccine group had a significantly lower occurrence of high-grade cervical intraepithelial neoplasia related to HPV-16 or HPV-18 than did those in the placebo group.

1,904 citations


Journal ArticleDOI
TL;DR: There is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.
Abstract: In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death. Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin, which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of "free" cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.

1,778 citations


Journal ArticleDOI
15 Feb 2007-Nature
TL;DR: Evidence is presented that delta-like 4 (Dll4)–Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina, and modulators of Dll4 or Notch signalling, such as γ-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.
Abstract: In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.

1,667 citations


Journal ArticleDOI
TL;DR: This review focuses on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
Abstract: During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance bet...

1,652 citations


Journal ArticleDOI
TL;DR: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation.
Abstract: Background The expression of interleukin-1–receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1β in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell proliferation, and apoptosis. Methods In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1–receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive placebo. At baseline and at 13 weeks, all patients underwent an oral glucose-tolerance test, followed by an intravenous bolus of 0.3 g of glucose per kilogram of body weight, 0.5 mg of glucagon, and 5 g of arginine. In addition, 35 patients underwent a hyperinsulinemic–euglycemic clamp study. The primary end point was a change in the level of glycated hemoglobin, and secondary end points were changes in beta-cell function, insulin sensitivity, and inflammatory markers. Results At 13 weeks, in the anakinra group, the glycated hemoglobin level was 0.46 percentage point lower than in the placebo group (P = 0.03); C-peptide secretion was enhanced (P = 0.05), and there were reductions in the ratio of proinsulin to insulin (P = 0.005) and in levels of interleukin-6 (P<0.001) and C-reactive protein (P = 0.002). Insulin resistance, insulin-regulated gene expression in skeletal muscle, serum adipokine levels, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drugrelated serious adverse events. Conclusions The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic inflammation. (ClinicalTrials.gov number, NCT00303394.)

1,621 citations


Journal ArticleDOI
TL;DR: Whether prostate cancer is driven by inflammation, and if so, to develop new strategies to prevent the disease, is determined by developing new experimental animal models coupled with classical Epidemiological studies, genetic epidemiological studies and molecular pathological approaches.
Abstract: About 20% of all human cancers are caused by chronic infection or chronic inflammatory states. Recently, a new hypothesis has been proposed for prostate carcinogenesis. It proposes that exposure to environmental factors such as infectious agents and dietary carcinogens, and hormonal imbalances lead to injury of the prostate and to the development of chronic inflammation and regenerative 'risk factor' lesions, referred to as proliferative inflammatory atrophy (PIA). By developing new experimental animal models coupled with classical epidemiological studies, genetic epidemiological studies and molecular pathological approaches, we should be able to determine whether prostate cancer is driven by inflammation, and if so, to develop new strategies to prevent the disease.

1,504 citations


Journal ArticleDOI
TL;DR: The results show that 1 year of treatment with trastuzumab after adjuvant chemotherapy has a significant overall survival benefit after a median follow-up of 2 years, and the emergence of this benefit after only 2 years reinforces the importance of trastizumab in the treatment of women with HER2-positive early breast cancer.

1,489 citations


Journal ArticleDOI
TL;DR: The content and potentials of the new Swedish national register on prescribed and dispensed medicines are described.
Abstract: The new Swedish Prescribed Drug Register-Opportunities for pharmacoepidemiological research and experience from the first six months.

1,429 citations


Journal ArticleDOI
TL;DR: A hidden Markov model, Phobius, is designed that combines transmembrane topology and signal peptide predictions, and also allows constrained and homology-enriched predictions.
Abstract: When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30–65% of all predicted signal peptides and 25–35% of all predicted transmembrane topologies overlap. This impairs predictions of 5–10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homologyenriched predictions. We here present a web interface (http:// phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.

Journal ArticleDOI
TL;DR: These findings have placed the mitochondria in the focus of current cell death research and highlighted the importance of understanding the mechanisms behind mitochondrial regulation of apoptosis.
Abstract: In addition to the established role of the mitochondria in energy metabolism, regulation of cell death has emerged as a second major function of these organelles. This seems to be intimately linked to their generation of reactive oxygen species (ROS), which have been implicated in mtDNA mutations, aging, and cell death. Mitochondrial regulation of apoptosis occurs by mechanisms, which have been conserved through evolution. Thus, many lethal agents target the mitochondria and cause release of cytochrome c and other pro-apoptotic proteins into the cytoplasm. Cytochrome c release is initiated by the dissociation of the hemoprotein from its binding to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and increases the level of soluble cytochrome c in the intermembrane space. Subsequent release of the hemoprotein occurs by pore formation mediated by pro-apoptotic Bcl-2 family proteins, or by Ca(2+) and ROS-triggered mitochondrial permeability transition, although the latter pathway might be more closely associated with necrosis. Taken together, these findings have placed the mitochondria in the focus of current cell death research.

Journal ArticleDOI
TL;DR: The function of most selenoproteins is currently unknown; however, thioredoxin reductases, glutathione peroxidases and thyroid hormone deiodinases are well characterised selenobroteins involved in redox regulation of intracellular signalling, redox homeostasis and thyroid hormones metabolism.
Abstract: The requirement of the trace element selenium for life and its beneficial role in human health has been known for several decades. This is attributed to low molecular weight selenium compounds, as well as to its presence within at least 25 proteins, named selenoproteins, in the form of the amino acid selenocysteine (Sec). Incorporation of Sec into selenoproteins employs a unique mechanism that involves decoding of the UGA codon. This process requires multiple features such as the selenocysteine insertion sequence (SECIS) element and several protein factors including a specific elongation factor EFSec and the SECIS binding protein 2, SBP2. The function of most selenoproteins is currently unknown; however, thioredoxin reductases (TrxR), glutathione peroxidases (GPx) and thyroid hormone deiodinases (DIO) are well characterised selenoproteins involved in redox regulation of intracellular signalling, redox homeostasis and thyroid hormone metabolism. Recent evidence points to a role for selenium compounds as well as selenoproteins in the prevention of some forms of cancer. A number of clinical trials are either underway or being planned to examine the effects of selenium on cancer incidence. In this review we describe some of the recent progress in our understanding of the mechanism of selenoprotein synthesis, the role of selenoproteins in human health and disease and the therapeutic potential of some of these proteins.

Journal ArticleDOI
Oluseun Adewumi1, Behrouz Aflatoonian2, Lars Ährlund-Richter3, Michal Amit4, Peter W. Andrews2, Gemma Beighton5, Paul Bello6, Nissim Benvenisty7, Lorraine S. Berry1, Simon Bevan, Barak Blum7, Justin Brooking8, Kevin G. Chen9, Andre Bh Choo, Gary A. Churchill, Marie Corbel10, Ivan Damjanov11, John S Draper12, Petr Dvorak13, Petr Dvorak14, Katarina Emanuelsson, Roland A. Fleck1, Angela Ford2, Karin Astrid Maria Gertow3, Karin Astrid Maria Gertow6, Marina Gertsenstein12, Paul J. Gokhale2, Rebecca S. Hamilton9, Alex Hampl13, Alex Hampl14, Lyn Healy1, Outi Hovatta3, Johan Hyllner, Marta P. Imreh15, Marta P. Imreh3, Joseph Itskovitz-Eldor4, Jamie P. Jackson2, Jackie Johnson6, Mark Jones2, Kehkooi Kee16, Benjamin L. King, Barbara B. Knowles, Majlinda Lako17, Franck Lebrin18, Barbara S. Mallon9, Daisy Manning19, Yoav Mayshar7, Ronald D.G. McKay9, Anna E. Michalska6, Milla Mikkola20, Masha Mileikovsky12, Stephen L. Minger21, Harry Moore2, Christine L. Mummery, Andras Nagy, Norio Nakatsuji22, Carmel M. O’Brien6, Steve Oh, Cia Olsson20, Timo Otonkoski20, Kye-Yoon Park9, Robert Passier, Hema Patel1, Minal Patel21, Roger A. Pedersen10, Martin F. Pera23, Marian S Piekarczyk19, Renee A. Reijo Pera16, Benjamin Reubinoff, Allan J. Robins, Janet Rossant12, Peter J. Rugg-Gunn10, Peter J. Rugg-Gunn12, Thomas C Schulz, Henrik Semb, Eric S Sherrer, Henrike Siemen16, Glyn Stacey1, Miodrag Stojkovic17, Hirofumi Suemori22, Jin P. Szatkiewicz, Tikva Turetsky, Timo Tuuri20, Steineke van den Brink, Kristina Vintersten12, Sanna Vuoristo20, Dorien Ward, Thomas A Weaver, Lesley Young1, Weidong Zhang 
TL;DR: The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide and found that despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers ofhuman embryonic stem cells.
Abstract: The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.

Journal ArticleDOI
TL;DR: It is concluded that the pharmacogenetic knowledge regarding CYP polymorphism now developed to a stage where it can be implemented in drug development and in clinical routine for specific drug treatments, thereby improving the drug response and reducing costs for drug treatment.

Journal ArticleDOI
TL;DR: A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
Abstract: A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P = 2.81×10 −7 ; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P = 0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P = 1.87×10 −9 ; odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis. CONCLUSIONS

Journal ArticleDOI
TL;DR: Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-γ production from allogeneic and autologous PBMC incubated with milk vesicles, concluding that human breast milk contains exosomes with the capacity to influence immune responses.
Abstract: Breast milk is a complex liquid with immune-competent cells and soluble proteins that provide immunity to the infant and affect the maturation of the infant's immune system. Exosomes are nanovesicles (30-100 nm) with an endosome-derived limiting membrane secreted by a diverse range of cell types. Because exosomes carry immunorelevant structures, they are suggested to participate in directing the immune response. We hypothesized that human breast milk contain exosomes, which may be important for the development of the infant's immune system. We isolated vesicles from the human colostrum and mature breast milk by ultracentrifugations and/or immuno-isolation on paramagnetic beads. We found that the vesicles displayed a typical exosome-like size and morphology as analyzed by electron microscopy. Furthermore, they floated at a density between 1.10 and 1.18 g/ml in a sucrose gradient, corresponding to the known density of exosomes. In addition, MHC classes I and II, CD63, CD81, and CD86 were detected on the vesicles by flow cytometry. Western blot and mass spectrometry further confirmed the presence of several exosome-associated molecules. Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-gamma production from allogeneic and autologous PBMC. In addition, an increased number of Foxp3(+)CD4(+)CD25(+) T regulatory cells were observed in PBMC incubated with milk vesicle preparations. We conclude that human breast milk contains exosomes with the capacity to influence immune responses.

Journal ArticleDOI
TL;DR: This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.
Abstract: Purpose: Recently, a 76-gene prognostic signature able to predict distant metastases in lymph node–negative (N − ) breast cancer patients was reported. The aims of this study conducted by TRANSBIG were to independently validate these results and to compare the outcome with clinical risk assessment. Experimental Design: Gene expression profiling of frozen samples from 198 N − systemically untreated patients was done at the Bordet Institute, blinded to clinical data and independent of Veridex. Genomic risk was defined by Veridex, blinded to clinical data. Survival analyses, done by an independent statistician, were done with the genomic risk and adjusted for the clinical risk, defined by Adjuvant! Online. Results: The actual 5- and 10-year time to distant metastasis were 98% (88-100%) and 94% (83-98%), respectively, for the good profile group and 76% (68-82%) and 73% (65-79%), respectively, for the poor profile group. The actual 5- and 10-year overall survival were 98% (88-100%) and 87% (73-94%), respectively, for the good profile group and 84% (77-89%) and 72% (63-78%), respectively, for the poor profile group. We observed a strong time dependence of this signature, leading to an adjusted hazard ratio of 13.58 (1.85-99.63) and 8.20 (1.10-60.90) at 5 years and 5.11 (1.57-16.67) and 2.55 (1.07-6.10) at 10 years for time to distant metastasis and overall survival, respectively. Conclusion: This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.

Journal ArticleDOI
02 Mar 2007-Science
TL;DR: The presence of a human RMS is demonstrated, which is unexpectedly organized around a lateral ventricular extension reaching the OB, and the neuroblasts in it are illustrated.
Abstract: The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone cells reach the olfactory bulb (OB) in rodents. However, the RMS in the adult human brain has been elusive. We demonstrate the presence of a human RMS, which is unexpectedly organized around a lateral ventricular extension reaching the OB, and illustrate the neuroblasts in it. The RMS ensheathing the lateral olfactory ventricular extension, as seen by magnetic resonance imaging, cell-specific markers, and electron microscopy, contains progenitor cells with migratory characteristics and cells that incorporate 5-bromo-2'-deoxyuridine and become mature neurons in the OB.

Journal ArticleDOI
TL;DR: The authors' observations serve as a demonstration and explanation of the epidemiologic evidence that associates the degree of traffic exposure with lung function in asthma.
Abstract: Background Air pollution from road traffic is a serious health hazard, and people with preexisting respiratory disease may be at increased risk. We investigated the effects of short-term exposure to diesel traffic in people with asthma in an urban, roadside environment. Methods We recruited 60 adults with either mild or moderate asthma to participate in a randomized, crossover study. Each participant walked for 2 hours along a London street (Oxford Street) and, on a separate occasion, through a nearby park (Hyde Park). We performed detailed real-time exposure, physiological, and immunologic measurements. Results Participants had significantly higher exposures to fine particles (<2.5 μm in aerodynamic diameter), ultrafine particles, elemental carbon, and nitrogen dioxide on Oxford Street than in Hyde Park. Walking for 2 hours on Oxford Street induced asymptomatic but consistent reductions in the forced expiratory volume in 1 second (FEV1) (up to 6.1%) and forced vital capacity (FVC) (up to 5.4%) that were ...

Journal ArticleDOI
TL;DR: It is demonstrated that long after the selection pressure from a short antibiotic exposure has been removed, there are still persistent long term impacts on the human intestinal microbiota that remain for up to 2 years post-treatment.
Abstract: Antibiotic administration is known to cause short-term disturbances in the microbiota of the human gastrointestinal tract, but the potential long-term consequences have not been well studied. The aims of this study were to analyse the long-term impact of a 7-day clindamycin treatment on the faecal microbiota and to simultaneously monitor the ecological stability of the microbiota in a control group as a baseline for reference. Faecal samples from four clindamycin-exposed and four control subjects were collected at nine different time points over 2 years. Using a polyphasic approach, we observed highly significant disturbances in the bacterial community that persisted throughout the sampling period. In particular, a sharp decline in the clonal diversity of Bacteroides isolates, as assessed by repetitive sequence-based PCR (rep-PCR) and long-term persistence of highly resistant clones were found as a direct response to the antibiotic exposure. The Bacteroides community never returned to its original composition during the study period as assessed using the molecular fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP). Furthermore, using real-time PCR we found a dramatic and persistent increase in levels of specific resistance genes in DNA extracted from the faeces after clindamycin administration. The temporal variations in the microbiota of the control group were minor compared to the large and persistent shift seen in the exposed group. These results demonstrate that long after the selection pressure from a short antibiotic exposure has been removed, there are still persistent long term impacts on the human intestinal microbiota that remain for up to 2 years post-treatment.

Journal ArticleDOI
TL;DR: A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis.
Abstract: A B S T R AC T Background Rheumatoid arthritis has a complex mode of inheritance. Although HLA-DRB1 and PTPN22 are well-established susceptibility loci, other genes that confer a modest level of risk have been identified recently. We carried out a genomewide association analysis to identify additional genetic loci associated with an increased risk of rheu- matoid arthritis. Methods We genotyped 317,503 single-nucleotide polymorphisms (SNPs) in a combined case- control study of 1522 case subjects with rheumatoid arthritis and 1850 matched con - trol subjects. The patients were seropositive for autoantibodies against cyclic citrul- linated peptide (CCP). We obtained samples from two data sets, the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Inves- tigation of Rheumatoid Arthritis (EIRA). Results from NARAC and EIRA for 297,086 SNPs that passed quality-control filters were combined with the use of Cochran- Mantel-Haenszel stratified analysis. SNPs showing a significant association with disease (P<1×10 −8 ) were genotyped in an independent set of case subjects with anti- CCP-positive rheumatoid arthritis (485 from NARAC and 512 from EIRA) and in control subjects (1282 from NARAC and 495 from EIRA). Results We observed associations between disease and variants in the major-histocompat- ibility-complex locus, in PTPN22, and in a SNP (rs3761847) on chromosome 9 for all samples tested, the latter with an odds ratio of 1.32 (95% confidence interval, 1.23 to 1.42; P = 4×10 − � 4 ). The SNP is in linkage disequilibrium with two genes relevant to chronic inflammation: TRAF1 (encoding tumor necrosis factor receptor-associated factor 1) and C5 (encoding complement component 5). Conclusions A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis.

Journal ArticleDOI
TL;DR: A meta‐analysis of case–control and cohort studies indicates that diabetes is associated with an increased risk of breast cancer.
Abstract: Diabetes mellitus has been associated with an increased risk of several types of cancers, but its relationship with breast cancer remains unclear. We conducted a meta-analysis of case-control and cohort studies to assess the evidence regarding the association between diabetes and risk of breast cancer. Studies were identified by searching MEDLINE (1966-February 2007) and the references of retrieved articles. We identified 20 studies (5 case-control and 15 cohort studies) that reported relative risk (RR) estimates (odds ratio, rate ratio/hazard ratio, or standardized incidence ratio) with 95% confidence intervals (CIs) for the relation between diabetes (largely Type II diabetes) and breast cancer incidence. Summary RRs were calculated using a random-effects model. Analysis of all 20 studies showed that women with (versus without) diabetes had a statistically significant 20% increased risk of breast cancer (RR, 1.20; 95% CI, 1.12-1.28). The summary estimates were similar for case-control studies (RR, 1.18; 95% CI, 1.05-1.32) and cohort studies (RR, 1.20; 95% CI, 1.11-1.30). Meta-analysis of 5 cohort studies on diabetes and mortality from breast cancer yielded a summary RR of 1.24 (95% CI, 0.95-1.62) for women with (versus without) diabetes. Findings from this meta-analysis indicate that diabetes is associated with an increased risk of breast cancer.

Journal ArticleDOI
TL;DR: Two SNPs consistently associated with breast cancer are identified: rs3803662 is near the 5′ end of TNRC9 , a high mobility group chromatin–associated protein whose expression is implicated in breast cancer metastasis to bone.
Abstract: Familial clustering studies indicate that breast cancer risk has a substantial genetic component. To identify new breast cancer risk variants, we genotyped approximately 300,000 SNPs in 1,600 Icelandic individuals with breast cancer and 11,563 controls using the Illumina Hap300 platform. We then tested selected SNPs in five replication sample sets. Overall, we studied 4,554 affected individuals and 17,577 controls. Two SNPs consistently associated with breast cancer: approximately 25% of individuals of European descent are homozygous for allele A of rs13387042 on chromosome 2q35 and have an estimated 1.44-fold greater risk than noncarriers, and for allele T of rs3803662 on 16q12, about 7% are homozygous and have a 1.64-fold greater risk. Risk from both alleles was confined to estrogen receptor-positive tumors. At present, no genes have been identified in the linkage disequilibrium block containing rs13387042. rs3803662 is near the 5' end of TNRC9 , a high mobility group chromatin-associated protein whose expression is implicated in breast cancer metastasis to bone.

Journal ArticleDOI
TL;DR: Nine recommendations for the management of fibromyalgia syndrome were developed using a systematic review and expert consensus using a Delphi process.
Abstract: Objective: To develop evidence-based recommendations for the management of fibromyalgia syndrome. Methods: A multidisciplinary task force was formed representing 11 European countries. The design o ...

Journal ArticleDOI
TL;DR: Two compounds are discovered that efficiently inhibited in vitro tumor cell proliferation in a GLI-dependent manner and successfully blocked cell growth in an in vivo xenograft model using human prostate cancer cells harboring downstream activation of the Hh pathway.
Abstract: The developmentally important Hedgehog (Hh) signaling pathway has recently been implicated in several forms of solid cancer. Current drug development programs focus on targeting the protooncogene Smoothened, a key transmembrane pathway member. These drug candidates, albeit promising, do not address the scenario in which pathway activation occurs downstream of Smoothened, as observed in cases of medulloblastoma, glioma, pericytoma, breast cancer, and prostate cancer. A cellular screen for small-molecule antagonists of GLI-mediated transcription, which constitutes the final step in the Hh pathway, revealed two molecules that are able to selectively inhibit GLI-mediated gene transactivation. We provide genetic evidence of downstream pathway blockade by these compounds and demonstrate the ineffectiveness of upstream antagonists such as cyclopamine in such situations. Mechanistically, both inhibitors act in the nucleus to block GLI function, and one of them interferes with GLI1 DNA binding in living cells. Importantly, the discovered compounds efficiently inhibited in vitro tumor cell proliferation in a GLI-dependent manner and successfully blocked cell growth in an in vivo xenograft model using human prostate cancer cells harboring downstream activation of the Hh pathway.

Journal ArticleDOI
01 Mar 2007-Neuron
TL;DR: A disynaptic inhibitory pathway among neocortical pyramidal cells (PCs) is reported and proposed as a central mechanism for regulation of cortical activity.

Journal ArticleDOI
11 Jul 2007-PLOS ONE
TL;DR: It is shown for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema.
Abstract: MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases.

Journal ArticleDOI
TL;DR: The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.
Abstract: Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.

Journal ArticleDOI
TL;DR: Thioredoxin and binding proteins appear to control apoptosis or metabolic states such as carbohydrate and lipid metabolism related to diseases such as diabetes and atherosclerosis and the fundamental differences between bacterial and mammalian thiOREDoxin reductases offer new principles for treatment of infections.
Abstract: Thioredoxin and glutaredoxin systems in mammalian cells utilize thiol and selenol groups to maintain a reducing intracellular redox state acting as antioxidants and reducing agents in redox signaling with oxidizing reactive oxygen species. During the last decade, the functional roles of thioredoxin in particular have continued to expand, also including novel functions such as a secreted growth factor or a chemokine for immune cells. The role of thioredoxin and glutaredoxin in antioxidant defense and the role of thioredoxin in controlling recruitment of inflammatory cells offer potential use in clinical therapy. The fundamental differences between bacterial and mammalian thioredoxin reductases offer new principles for treatment of infections. Clinical drugs already in use target the active site selenol in thioredoxin reductases, inducing cell death in tumor cells. Thioredoxin and binding proteins (ASK1 and TBP2) appear to control apoptosis or metabolic states such as carbohydrate and lipid metabolism related to diseases such as diabetes and atherosclerosis.