scispace - formally typeset
Search or ask a question
Institution

Karolinska Institutet

EducationStockholm, Sweden
About: Karolinska Institutet is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Population & Cancer. The organization has 46212 authors who have published 121142 publications receiving 6008130 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings indicate that MSCs escape recognition by CTLs and alloreactive NK cells, and inhibit the formation of cytotoxic T cells by secreting a soluble factor, but that they do not interfere with C TLs and NK cell lysis.
Abstract: Background Mesenchymal stem cells (MSCs) can reduce the incidence of graft-versus-host disease because of their ability to inhibit T-lymphocyte proliferation. There are no publications on the effect that MSCs have on cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, effector cells vital for the graft-versus-leukemia effect. Methods Cytotoxic T cells were primed in mixed lymphocyte culture (MLC) against irradiated stimulator lymphocytes, and irradiated third-party MSCs were added at different time points. The CTLs were collected, and their cytotoxic potential was analyzed in a chromium-release assay against the same stimulator cells as in the MLC. Purified NK cells were mixed with irradiated MSCs, and the lysis was measured in chromium-release assay against K562 target cells. Results We found that MSCs inhibited CTL-mediated lysis by 70% if added at the beginning of the 6-day MLC. The lysis was not affected on day 3 or in the cytotoxic phase. Furthermore, MSCs inhibited the formation of cytotoxic lymphocytes when the cells were separated in a transwell system, which indicates that the effect is mediated by a soluble factor. NK cell-mediated lysis of K562 cells was not inhibited by MSCs. MSCs did not induce proliferation of allogeneic lymphocytes, and they were not lysed by allogeneic CTLs or NK cells. Conclusion Our findings indicate that MSCs escape recognition by CTLs and alloreactive NK cells, and inhibit the formation of cytotoxic T cells by secreting a soluble factor, but that they do not interfere with CTLs and NK cell lysis.

646 citations

Journal ArticleDOI
Bonnie R. Joubert1, Janine F. Felix2, Paul Yousefi3, Kelly M. Bakulski4, Allan C. Just5, Carrie V. Breton6, Sarah E. Reese1, Christina A. Markunas7, Christina A. Markunas1, Rebecca C Richmond8, Cheng-Jian Xu9, Leanne K. Küpers9, Sam S. Oh10, Cathrine Hoyo11, Olena Gruzieva12, Cilla Söderhäll12, Lucas A. Salas13, Nour Baïz14, Hongmei Zhang15, Johanna Lepeule16, Carlos Ruiz13, Symen Ligthart2, Tianyuan Wang1, Jack A. Taylor1, Liesbeth Duijts, Gemma C Sharp8, Soesma A Jankipersadsing9, Roy Miodini Nilsen17, Ahmad Vaez18, Ahmad Vaez9, M. Daniele Fallin4, Donglei Hu10, Augusto A. Litonjua19, Bernard F. Fuemmeler7, Karen Huen3, Juha Kere12, Inger Kull12, Monica Cheng Munthe-Kaas20, Ulrike Gehring21, Mariona Bustamante, Marie José Saurel-Coubizolles22, Bilal M. Quraishi15, Jie Ren6, Jörg Tost, Juan R. González13, Marjolein J. Peters2, Siri E. Håberg23, Zongli Xu1, Joyce B. J. van Meurs2, Tom R. Gaunt8, Marjan Kerkhof9, Eva Corpeleijn9, Andrew P. Feinberg24, Celeste Eng10, Andrea A. Baccarelli25, Sara E. Benjamin Neelon4, Asa Bradman3, Simon Kebede Merid12, Anna Bergström12, Zdenko Herceg26, Hector Hernandez-Vargas26, Bert Brunekreef21, Mariona Pinart, Barbara Heude27, Susan Ewart28, Jin Yao6, Nathanaël Lemonnier29, Oscar H. Franco2, Michael C. Wu30, Albert Hofman25, Albert Hofman2, Wendy L. McArdle8, Pieter van der Vlies9, Fahimeh Falahi9, Matthew W. Gillman25, Lisa F. Barcellos3, Ashok Kumar31, Ashok Kumar32, Ashok Kumar12, Magnus Wickman12, Magnus Wickman33, Stefano Guerra, Marie-Aline Charles27, John W. Holloway34, Charles Auffray29, Henning Tiemeier2, George Davey Smith8, Dirkje S. Postma9, Marie-France Hivert25, Brenda Eskenazi3, Martine Vrijheid13, Hasan Arshad34, Josep M. Antó, Abbas Dehghan2, Wilfried Karmaus15, Isabella Annesi-Maesano14, Jordi Sunyer, Akram Ghantous26, Göran Pershagen12, Nina Holland3, Susan K. Murphy7, Dawn L. DeMeo19, Esteban G. Burchard10, Christine Ladd-Acosta4, Harold Snieder9, Wenche Nystad23, Gerard H. Koppelman9, Caroline L Relton8, Vincent W. V. Jaddoe2, Allen J. Wilcox1, Erik Melén33, Erik Melén12, Stephanie J. London1 
TL;DR: This large scale meta-analysis of methylation data identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.
Abstract: Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.

646 citations

Journal ArticleDOI
16 May 1985-Nature
TL;DR: Advances in molecular biology have made it possible to define some of these changes in molecular terms and to trace the steps by which certain tumours evolve.
Abstract: It is generally accepted that tumours arise through the accumulation of several changes affecting the control of cell growth. Recent advances in molecular biology have made it possible to define some of these changes in molecular terms and to trace the steps by which certain tumours evolve.

645 citations

Journal ArticleDOI
TL;DR: The findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic polypeptide, distantly related to transforming growth factor-beta (TGF-beta), originally isolated by virtue of its ability to induce dopamine uptake and cell survival in cultures of embryonic ventral midbrain dopaminergic neurons, and more recently shown to be a potent neurotrophic factor for motorneurons. The biological activities and distribution of this molecule outside the central nervous system are presently unknown. We report here on the mRNA expression, biological activities and initial receptor binding characterization of GDNF and a shorter spliced variant termed GDNF beta in different organs and peripheral neurons of the developing rat. Both GDNF mRNA forms were found to be most highly expressed in developing skin, whisker pad, kidney, stomach and testis. Lower expression was also detected in developing skeletal muscle, ovary, lung, and adrenal gland. Developing spinal cord, superior cervical ganglion (SCG) and dorsal root ganglion (DRG) also expressed low levels of GDNF mRNA. Two days after nerve transection, GDNF mRNA levels increased dramatically in the sciatic nerve. Overall, GDNF mRNA expression was significantly higher in peripheral organs than in neuronal tissues. Expression of either GDNF mRNA isoform in insect cells resulted in the production of indistinguishable mature GDNF polypeptides. Purified recombinant GDNF promoted neurite outgrowth and survival of embryonic chick sympathetic neurons. GDNF produced robust bundle-like, fasciculated outgrowth from chick sympathetic ganglion explants. Although GDNF displayed only low activity on survival of newborn rat SCG neurons, this protein was found to increase the expression of vasoactive intestinal peptide and preprotachykinin-A mRNAs in cultured SCG neurons. GDNF also promoted survival of about half of the neurons in embryonic chick nodose ganglion and a small subpopulation of embryonic sensory neurons in chick dorsal root and rat trigeminal ganglia. Embryonic chick sympathetic neurons expressed receptors for GDNF with Kd 1-5 x 10(-9) M, as measured by saturation and displacement binding assays. Our findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.

645 citations

Journal ArticleDOI
Richa Saxena1, Richa Saxena2, Claudia Langenberg, Toshiko Tanaka3  +170 moreInstitutions (52)
TL;DR: A meta-analysis of nine genome-wide association studies and a follow-up of 29 independent loci found three newly implicated loci to be associated with type 2 diabetes: GIPR, ADCY5 and VPS13C.
Abstract: Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).

645 citations


Authors

Showing all 46522 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Albert Hofman2672530321405
Guido Kroemer2361404246571
Eric B. Rimm196988147119
Scott M. Grundy187841231821
Jing Wang1844046202769
Tadamitsu Kishimoto1811067130860
John Hardy1771178171694
Marc G. Caron17367499802
Ramachandran S. Vasan1721100138108
Adrian L. Harris1701084120365
Douglas F. Easton165844113809
Zulfiqar A Bhutta1651231169329
Judah Folkman165499148611
Ralph A. DeFronzo160759132993
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

94% related

French Institute of Health and Medical Research
174.2K papers, 8.3M citations

94% related

Lund University
124.6K papers, 5M citations

93% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

93% related

University of Copenhagen
149.7K papers, 5.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022500
20217,763
20206,922
20196,057
20185,548