scispace - formally typeset
Search or ask a question
Institution

Katholieke Universiteit Leuven

EducationLeuven, Belgium
About: Katholieke Universiteit Leuven is a education organization based out in Leuven, Belgium. It is known for research contribution in the topics: Population & Transplantation. The organization has 61109 authors who have published 176584 publications receiving 6210872 citations.


Papers
More filters
Journal ArticleDOI
05 Sep 1996-Nature
TL;DR: It is reported that inactivation of the tissue factor gene (TF) results in abnormal circulation from yolk sac to embryo beyond embryonic day 8.5, leading to embryo wasting and death, implying that tissue factor has a role in bloodvessel development.
Abstract: Tissue factor, a member of the cytokine-receptor superfamily and high-affinity receptor and cofactor for plasma factor VII/VIIa (ref. 1), is the primary cellular initiator of blood coagulation. It is involved in thrombosis and inflammation associated with sepsis, atherosclerosis and cancer, and can participate in other cellular processes including intracellular signalling, metastasis, tumor-associated angiogenesis, and embryogenesis. Here we report that inactivation of the tissue factor gene (TF) results in abnormal circulation from yolk sac to embryo beyond embryonic day 8.5, leading to embryo wasting and death. Vitelline vessels from null mice were deficient in smooth-muscle alpha-actin-expressing mesenchymal cells, which participate in organization of the vessel wall. This implies that tissue factor has a role in blood vessel development.

682 citations

Journal ArticleDOI
TL;DR: In this paper, the possibilities of focused ion beam (FIB) applications in microsystem technology are reviewed, and a procedure for cross sectioning on samples is presented, as well as some examples of how this technique can be applied to study processing results.
Abstract: In this paper the possibilities of focused ion beam (FIB) applications in microsystem technology are reviewed. After an introduction to the technology and the operating principles of FIB, two classes of applications are described. First the subject of FIB for microsystem technology inspection, metrology and failure analysis is outlined. A procedure for cross sectioning on samples is presented, as well as some examples of how this technique can be applied to study processing results. The second part of the paper is on the use of FIB as a tool for maskless micromachining. Both subtractive (etching) and additive (deposition) techniques are discussed, as well as the combination of FIB implantation of silicon with subsequent wet etching. We will show the possibility to fabricate three-dimensional structures on a micrometre scale, and give examples of recent realizations thereof.

682 citations

Journal ArticleDOI
TL;DR: Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses.
Abstract: Functional MRI (fMRI) studies have shown that low-frequency (<0.1 Hz) spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal during restful wakefulness are coherent within distributed large-scale cortical and subcortical networks (resting state networks, RSNs). The neuronal mechanisms underlying RSNs remain poorly understood. Here, we describe magnetoencephalographic correspondents of two well-characterized RSNs: the dorsal attention and the default mode networks. Seed-based correlation mapping was performed using time-dependent MEG power reconstructed at each voxel within the brain. The topography of RSNs computed on the basis of extended (5 min) epochs was similar to that observed with fMRI but confined to the same hemisphere as the seed region. Analyses taking into account the nonstationarity of MEG activity showed transient formation of more complete RSNs, including nodes in the contralateral hemisphere. Spectral analysis indicated that RSNs manifest in MEG as synchronous modulation of band-limited power primarily within the theta, alpha, and beta bands—that is, in frequencies slower than those associated with the local electrophysiological correlates of event-related BOLD responses.

681 citations

Journal ArticleDOI
TL;DR: Over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53 and a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY are mapped.
Abstract: Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.

680 citations

Journal ArticleDOI
TL;DR: The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to thelevel of multicellular preparations.
Abstract: The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular prep...

679 citations


Authors

Showing all 61602 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Rakesh K. Jain2001467177727
Stefan Schreiber1781233138528
Masayuki Yamamoto1711576123028
Jun Wang1661093141621
David R. Jacobs1651262113892
Klaus Müllen1642125140748
Peter Carmeliet164844122918
Hua Zhang1631503116769
William J. Sandborn1621317108564
Elliott M. Antman161716179462
Tobin J. Marks1591621111604
Ian A. Wilson15897198221
Johan Auwerx15865395779
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Stanford University
320.3K papers, 21.8M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023307
2022857
202111,007
202010,541
20199,719
20189,532