scispace - formally typeset
Search or ask a question
Institution

Katholieke Universiteit Leuven

EducationLeuven, Belgium
About: Katholieke Universiteit Leuven is a education organization based out in Leuven, Belgium. It is known for research contribution in the topics: Population & Transplantation. The organization has 61109 authors who have published 176584 publications receiving 6210872 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
04 Apr 1996-Nature
TL;DR: It is reported that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES)16,17, and even more impaired in homozygous D1-VEGF- deficient (VDGF-/-) T-ES embryos, resulting in death at mid-gestation.
Abstract: The endothelial cell-specific vascular endothelial growth factor (VEGF) and its cellular receptors Flt-1 and Flk-1 have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis and the impaired vessel formation in Flk-1 and Flt-1 deficient embryos. However, because Flt-1 also binds placental growth factor, a VEGF homologue, the precise role of VEGF was unknown. Here we report that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES) and even more impaired in homozygous VEGF-deficient (VEGF-/-) T-ES embryos, resulting in death at mid-gestation. Similar phenotypes were observed in F1-VEGF+/- embryos, generated by germline transmission. We believe that this heterozygous lethal phenotype, which differs from the homozygous lethality in VEGF-receptor-deficient embryos, is unprecedented for a targeted autosomal gene inactivation, and is indicative of a tight dose-dependent regulation of embryonic vessel development by VEGF.

4,216 citations

Journal ArticleDOI
TL;DR: The cellular and molecular mechanisms underlying the formation of endothelium-lined channels and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.
Abstract: Endothelial and smooth muscle cells interact with each other to form new blood vessels. In this review, the cellular and molecular mechanisms underlying the formation of endothelium-lined channels (angiogenesis) and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.

4,154 citations

Journal ArticleDOI
TL;DR: Molecular insights into the formation of new blood vessels are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.
Abstract: Blood vessels constitute the first organ in the embryo and form the largest network in our body but, sadly, are also often deadly. When dysregulated, the formation of new blood vessels contributes to numerous malignant, ischemic, inflammatory, infectious and immune disorders. Molecular insights into these processes are being generated at a rapidly increasing pace, offering new therapeutic opportunities that are currently being evaluated.

4,137 citations

Journal ArticleDOI
Luke Jostins1, Stephan Ripke2, Rinse K. Weersma3, Richard H. Duerr4, Dermot P.B. McGovern5, Ken Y. Hui6, James Lee7, L. Philip Schumm8, Yashoda Sharma6, Carl A. Anderson1, Jonah Essers9, Mitja Mitrovic3, Kaida Ning6, Isabelle Cleynen10, Emilie Theatre11, Sarah L. Spain12, Soumya Raychaudhuri9, Philippe Goyette13, Zhi Wei14, Clara Abraham6, Jean-Paul Achkar15, Tariq Ahmad16, Leila Amininejad17, Ashwin N. Ananthakrishnan9, Vibeke Andersen18, Jane M. Andrews19, Leonard Baidoo4, Tobias Balschun20, Peter A. Bampton21, Alain Bitton22, Gabrielle Boucher13, Stephan Brand23, Carsten Büning24, Ariella Cohain25, Sven Cichon26, Mauro D'Amato27, Dirk De Jong3, Kathy L Devaney9, Marla Dubinsky5, Cathryn Edwards28, David Ellinghaus20, Lynnette R. Ferguson29, Denis Franchimont17, Karin Fransen3, Richard B. Gearry30, Michel Georges11, Christian Gieger, Jürgen Glas22, Talin Haritunians5, Ailsa Hart31, Christopher J. Hawkey32, Matija Hedl6, Xinli Hu9, Tom H. Karlsen33, Limas Kupčinskas34, Subra Kugathasan35, Anna Latiano36, Debby Laukens37, Ian C. Lawrance38, Charlie W. Lees39, Edouard Louis11, Gillian Mahy40, John C. Mansfield41, Angharad R. Morgan29, Craig Mowat42, William G. Newman43, Orazio Palmieri36, Cyriel Y. Ponsioen44, Uroš Potočnik45, Natalie J. Prescott6, Miguel Regueiro4, Jerome I. Rotter5, Richard K Russell46, Jeremy D. Sanderson47, Miquel Sans, Jack Satsangi39, Stefan Schreiber20, Lisa A. Simms48, Jurgita Sventoraityte34, Stephan R. Targan, Kent D. Taylor5, Mark Tremelling49, Hein W. Verspaget50, Martine De Vos37, Cisca Wijmenga3, David C. Wilson39, Juliane Winkelmann51, Ramnik J. Xavier9, Sebastian Zeissig20, Bin Zhang25, Clarence K. Zhang6, Hongyu Zhao6, Mark S. Silverberg52, Vito Annese, Hakon Hakonarson53, Steven R. Brant54, Graham L. Radford-Smith55, Christopher G. Mathew12, John D. Rioux13, Eric E. Schadt25, Mark J. Daly2, Andre Franke20, Miles Parkes7, Severine Vermeire10, Jeffrey C. Barrett1, Judy H. Cho6 
Wellcome Trust Sanger Institute1, Broad Institute2, University of Groningen3, University of Pittsburgh4, Cedars-Sinai Medical Center5, Yale University6, University of Cambridge7, University of Chicago8, Harvard University9, Katholieke Universiteit Leuven10, University of Liège11, King's College London12, Université de Montréal13, New Jersey Institute of Technology14, Cleveland Clinic15, Peninsula College of Medicine and Dentistry16, Université libre de Bruxelles17, Aarhus University18, University of Adelaide19, University of Kiel20, Flinders University21, McGill University22, Ludwig Maximilian University of Munich23, Charité24, Icahn School of Medicine at Mount Sinai25, University of Bonn26, Karolinska Institutet27, Torbay Hospital28, University of Auckland29, Christchurch Hospital30, Imperial College London31, Queen's University32, University of Oslo33, Lithuanian University of Health Sciences34, Emory University35, Casa Sollievo della Sofferenza36, Ghent University37, University of Western Australia38, University of Edinburgh39, Queensland Health40, Newcastle University41, University of Dundee42, University of Manchester43, University of Amsterdam44, University of Maribor45, Royal Hospital for Sick Children46, Guy's and St Thomas' NHS Foundation Trust47, QIMR Berghofer Medical Research Institute48, Norfolk and Norwich University Hospital49, Leiden University50, Technische Universität München51, University of Toronto52, University of Pennsylvania53, Johns Hopkins University54, University of Queensland55
01 Nov 2012-Nature
TL;DR: A meta-analysis of Crohn’s disease and ulcerative colitis genome-wide association scans is undertaken, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls.
Abstract: Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

4,094 citations


Authors

Showing all 61602 results

NameH-indexPapersCitations
Eugene Braunwald2301711264576
Joseph L. Goldstein207556149527
Rakesh K. Jain2001467177727
Stefan Schreiber1781233138528
Masayuki Yamamoto1711576123028
Jun Wang1661093141621
David R. Jacobs1651262113892
Klaus Müllen1642125140748
Peter Carmeliet164844122918
Hua Zhang1631503116769
William J. Sandborn1621317108564
Elliott M. Antman161716179462
Tobin J. Marks1591621111604
Ian A. Wilson15897198221
Johan Auwerx15865395779
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Stanford University
320.3K papers, 21.8M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023307
2022857
202111,007
202010,541
20199,719
20189,532