scispace - formally typeset
Search or ask a question
Institution

Kent State University

EducationKent, Ohio, United States
About: Kent State University is a education organization based out in Kent, Ohio, United States. It is known for research contribution in the topics: Liquid crystal & Population. The organization has 10897 authors who have published 24607 publications receiving 720309 citations. The organization is also known as: Kent State & KSU.


Papers
More filters
Journal ArticleDOI
TL;DR: A new stress model called the model of conservation of resources is presented, based on the supposition that people strive to retain, project, and build resources and that what is threatening to them is the potential or actual loss of these valued resources.
Abstract: Major perspectives concerning stress are presented with the goal of clarifying the nature of what has proved to be a heuristic but vague construct. Current conceptualizations of stress are challenged as being too phenomenological and ambiguous, and consequently, not given to direct empirical testing. Indeed, it is argued that researchers have tended to avoid the problem of defining stress, choosing to study stress without reference to a clear framework. A new stress model called the model of conservation of resources is presented as an alternative. This resource-oriented model is based on the supposition that people strive to retain, project, and build resources and that what is threatening to them is the potential or actual loss of these valued resources. Implications of the model of conservation of resources for new research directions are discussed.

9,782 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations

Journal ArticleDOI
K. Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, Patricia R. Burchat4, C. D. Carone5, C. Caso, G. Conforto6, Olav Dahl3, Michael Doser7, Semen Eidelman8, Jonathan L. Feng9, L. K. Gibbons10, Maury Goodman11, Christoph Grab12, D. E. Groom3, Atul Gurtu13, Atul Gurtu7, K. G. Hayes14, J. J. Herna`ndez-Rey15, K. Honscheid16, Christopher Kolda17, Michelangelo L. Mangano7, David Manley18, Aneesh V. Manohar19, John March-Russell7, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama20, S. Sánchez Navas12, Keith A. Olive21, Luc Pape7, C. Patrignani, A. Piepke22, Matts Roos23, John Terning24, Nils A. Tornqvist23, T. G. Trippe3, Petr Vogel25, C. G. Wohl3, Ron L. Workman26, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso27, D. Asner28, K. S. Babu29, E. L. Barberio7, Marco Battaglia7, H. Bichsel30, O. Biebel31, Philippe Bloch7, Robert N. Cahn3, Ariella Cattai7, R. S. Chivukula32, R. Cousins33, G. A. Cowan34, Thibault Damour35, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira, Jens Erler36, V. V. Ezhela, A Fassò7, W. Fetscher12, Brian D. Fields37, B. Foster38, Daniel Froidevaux7, Masataka Fukugita39, Thomas K. Gaisser40, L. Garren, H.-J. Gerber12, Frederick J. Gilman41, Howard E. Haber42, C. A. Hagmann28, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan30, G. Höhler43, P. Igo-Kemenes44, John David Jackson3, Kurtis F Johnson45, D. Karlen, B. Kayser, S. R. Klein3, Konrad Kleinknecht46, I.G. Knowles47, P. Kreitz4, Yu V. Kuyanov, R. Landua7, Paul Langacker36, L. S. Littenberg48, Alan D. Martin49, Tatsuya Nakada50, Tatsuya Nakada7, Meenakshi Narain32, Paolo Nason, John A. Peacock47, Helen R. Quinn4, Stuart Raby16, Georg G. Raffelt31, E. A. Razuvaev, B. Renk46, L. Rolandi7, Michael T Ronan3, L.J. Rosenberg51, Christopher T. Sachrajda52, A. I. Sanda53, Subir Sarkar54, Michael Schmitt55, O. Schneider50, Douglas Scott56, W. G. Seligman57, Michael H. Shaevitz57, Torbjörn Sjöstrand58, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner59, Mark Srednicki60, A. Stahl, Todor Stanev40, M. Suzuki3, N. P. Tkachenko, German Valencia61, K. van Bibber28, Manuella Vincter62, D. R. Ward63, Bryan R. Webber63, M R Whalley49, Lincoln Wolfenstein41, J. Womersley, C. L. Woody48, O. V. Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Urbino6, CERN7, Budker Institute of Nuclear Physics8, University of California, Irvine9, Cornell University10, Argonne National Laboratory11, ETH Zurich12, Tata Institute of Fundamental Research13, Hillsdale College14, Spanish National Research Council15, Ohio State University16, University of Notre Dame17, Kent State University18, University of California, San Diego19, University of California, Berkeley20, University of Minnesota21, University of Alabama22, University of Helsinki23, Los Alamos National Laboratory24, California Institute of Technology25, George Washington University26, Syracuse University27, Lawrence Livermore National Laboratory28, Oklahoma State University–Stillwater29, University of Washington30, Max Planck Society31, Boston University32, University of California, Los Angeles33, Royal Holloway, University of London34, Université Paris-Saclay35, University of Pennsylvania36, University of Illinois at Urbana–Champaign37, University of Bristol38, University of Tokyo39, University of Delaware40, Carnegie Mellon University41, University of California, Santa Cruz42, Karlsruhe Institute of Technology43, Heidelberg University44, Florida State University45, University of Mainz46, University of Edinburgh47, Brookhaven National Laboratory48, Durham University49, University of Lausanne50, Massachusetts Institute of Technology51, University of Southampton52, Nagoya University53, University of Oxford54, Northwestern University55, University of British Columbia56, Columbia University57, Lund University58, University of Sheffield59, University of California, Santa Barbara60, Iowa State University61, University of Alberta62, University of Cambridge63
TL;DR: This biennial Review summarizes much of Particle Physics using data from previous editions, plus 2205 new measurements from 667 papers, and features expanded coverage of CP violation in B mesons and of neutrino oscillations.
Abstract: This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

5,143 citations

Journal ArticleDOI
TL;DR: Conservation of Resources (COR) theory predicts that resource loss is the principal ingredient in the stress process as discussed by the authors, and resource gain, in turn, is depicted as of increasing importance in the context of loss.
Abstract: Conservation of Resources (COR) theory predicts that resource loss is the principal ingredient in the stress process. Resource gain, in turn, is depicted as of increasing importance in the context of loss. Because resources are also used to prevent resource loss, at each stage of the stress process people are increasingly vulnerable to negative stress sequelae, that if ongoing result in rapid and impactful loss spirals. COR theory is seen as an alternative to appraisal-based stress theories because it relies more centrally on the objective and culturally construed nature of the environment in determining the stress process, rather than the individual’s personal construel. COR theory has been successfully employed in predicting a range of stress outcomes in organisational settings, health contexts, following traumatic stress, and in the face of everyday stressors. Recent advances in understanding the biological, cognitive, and social bases of stress responding are seen as consistent with the original formulation of COR theory, but call for envisioning of COR theory and the stress process within a more collectivist backdrop than was first posited. The role of both resource losses and gains in predicting positive stress outcomes is also considered. Finally, the limitations and applications of COR theory are discussed.

4,586 citations

Journal ArticleDOI
Kaoru Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, P. R. Burchat4, C. D. Carone5, C. Caso6, G. Conforto7, Olav Dahl3, Michael Doser8, Semen Eidelman9, Jonathan L. Feng10, L. K. Gibbons11, M. C. Goodman12, Christoph Grab13, D. E. Groom3, Atul Gurtu14, Atul Gurtu8, K. G. Hayes15, J.J. Hernández-Rey16, K. Honscheid17, Christopher Kolda18, Michelangelo L. Mangano8, D. M. Manley19, Aneesh V. Manohar20, John March-Russell8, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama3, Hitoshi Murayama21, S. Sánchez Navas13, Keith A. Olive22, Luc Pape8, C. Patrignani6, A. Piepke23, Matts Roos24, John Terning25, Nils A. Tornqvist24, T. G. Trippe3, Petr Vogel26, C. G. Wohl3, Ron L. Workman27, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso28, D. Asner29, K. S. Babu30, E. L. Barberio8, Marco Battaglia8, H. Bichsel31, O. Biebel32, P. Bloch8, Robert N. Cahn3, Ariella Cattai8, R.S. Chivukula33, R. Cousins34, G. A. Cowan35, Thibault Damour36, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira37, Jens Erler38, V. V. Ezhela, A Fassò8, W. Fetscher13, Brian D. Fields39, B. Foster40, Daniel Froidevaux8, Masataka Fukugita41, Thomas K. Gaisser42, L. A. Garren37, H J Gerber13, Frederick J. Gilman43, Howard E. Haber44, C. A. Hagmann29, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan31, G. Höhler45, P. Igo-Kemenes46, John David Jackson3, Kurtis F Johnson47, D. Karlen48, B. Kayser37, S. R. Klein3, Konrad Kleinknecht49, I.G. Knowles50, P. Kreitz4, Yu V. Kuyanov, R. Landua8, Paul Langacker38, L. S. Littenberg51, Alan D. Martin52, Tatsuya Nakada53, Tatsuya Nakada8, Meenakshi Narain33, Paolo Nason, John A. Peacock54, H. R. Quinn55, Stuart Raby17, Georg G. Raffelt32, E. A. Razuvaev, B. Renk49, L. Rolandi8, Michael T Ronan3, L.J. Rosenberg54, C.T. Sachrajda55, A. I. Sanda56, Subir Sarkar57, Michael Schmitt58, O. Schneider53, Douglas Scott59, W. G. Seligman60, M. H. Shaevitz60, Torbjörn Sjöstrand61, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner62, Mark Srednicki63, Achim Stahl, Todor Stanev42, M. Suzuki3, N. P. Tkachenko, German Valencia64, K. van Bibber29, Manuella Vincter65, D. R. Ward66, Bryan R. Webber66, M R Whalley52, Lincoln Wolfenstein43, J. Womersley37, C. L. Woody51, Oleg Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Genoa6, University of Urbino7, CERN8, Budker Institute of Nuclear Physics9, University of California, Irvine10, Cornell University11, Argonne National Laboratory12, ETH Zurich13, Tata Institute of Fundamental Research14, Hillsdale College15, Spanish National Research Council16, Ohio State University17, University of Notre Dame18, Kent State University19, University of California, San Diego20, University of California, Berkeley21, University of Minnesota22, University of Alabama23, University of Helsinki24, Los Alamos National Laboratory25, California Institute of Technology26, George Washington University27, Syracuse University28, Lawrence Livermore National Laboratory29, Oklahoma State University–Stillwater30, University of Washington31, Max Planck Society32, Boston University33, University of California, Los Angeles34, Royal Holloway, University of London35, Université Paris-Saclay36, Fermilab37, University of Pennsylvania38, University of Illinois at Urbana–Champaign39, University of Bristol40, University of Tokyo41, University of Delaware42, Carnegie Mellon University43, University of California, Santa Cruz44, Karlsruhe Institute of Technology45, Heidelberg University46, Florida State University47, Carleton University48, University of Mainz49, University of Edinburgh50, Brookhaven National Laboratory51, Durham University52, University of Lausanne53, Massachusetts Institute of Technology54, University of Southampton55, Nagoya University56, University of Oxford57, Northwestern University58, University of British Columbia59, Columbia University60, Lund University61, University of Sheffield62, University of California, Santa Barbara63, Iowa State University64, University of Alberta65, University of Cambridge66
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

4,465 citations


Authors

Showing all 11015 results

NameH-indexPapersCitations
Robert A. Bjork7216821670
Clemens Burda7123027468
Chris Dyer7124032739
Fredric D. Wolinsky6927016009
Oleg D. Lavrentovich6843615101
M. Kopytine6815820125
James Boyd6820718857
J. Bouchet6824617649
Mina K. Chung6727827717
Hiroshi Sugiyama6774320128
Kenneth E. Leonard6622712929
Damir Janigro6621212835
William E. Acree6695821196
Andrew H. Van de Ven6514847687
Jacob E. Friedman6519112485
Network Information
Related Institutions (5)
State University of New York System
78K papers, 2.9M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

94% related

Arizona State University
109.6K papers, 4.4M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

Pennsylvania State University
196.8K papers, 8.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202354
2022160
20211,121
20201,077
20191,005
20181,103