scispace - formally typeset
Search or ask a question
Institution

Kettering University

EducationFlint, Michigan, United States
About: Kettering University is a education organization based out in Flint, Michigan, United States. It is known for research contribution in the topics: RNA & Antigen. The organization has 6842 authors who have published 7689 publications receiving 337503 citations. The organization is also known as: GMI Engineering & Management Institute & General Motors Institute.
Topics: RNA, Antigen, DNA, Cancer, Population


Papers
More filters
Journal ArticleDOI
TL;DR: This work has mainly targeted the extraction of blood vessels, neurosvascular structure in particular, but has also reviewed some of the segmentation methods for the tubular objects that show similar characteristics to vessels.
Abstract: Vessel segmentation algorithms are the critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms. We put the various vessel extraction approaches and techniques in perspective by means of a classification of the existing research. While we have mainly targeted the extraction of blood vessels, neurosvascular structure in particular, we have also reviewed some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We have divided vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) tube-like object detection approaches. Some of these categories are further divided into subcategories. We have also created tables to compare the papers in each category against such criteria as dimensionality, input type, preprocessing, user interaction, and result type.

1,020 citations

Journal ArticleDOI
TL;DR: A better understanding of SUMO regulatory mechanisms will lead to improved approaches for analysing the function ofsumO and substrate conjugation in distinct cellular pathways.
Abstract: Proteins of the small ubiquitin-related modifier (SUMO) family are conjugated to proteins to regulate such cellular processes as nuclear transport, transcription, chromosome segregation and DNA repair. Recently, numerous insights into regulatory mechanisms of the SUMO modification pathway have emerged. Although SUMO-conjugating enzymes can discriminate between SUMO targets, many substrates possess characteristics that facilitate their modification. Other post-translational modifications also regulate SUMO conjugation, suggesting that SUMO signalling is integrated with other signal transduction pathways. A better understanding of SUMO regulatory mechanisms will lead to improved approaches for analysing the function of SUMO and substrate conjugation in distinct cellular pathways.

992 citations

Journal ArticleDOI
11 Feb 1994-Cell
TL;DR: Loss of gamma chain does not appear to perturb T cell development, since both thymic and peripheral T cell populations appear normal, and these mice represent an important tool for evaluating the role of these receptors in humoral and cellular immune responses.

979 citations

Journal ArticleDOI
23 Apr 1992-Nature
TL;DR: The main stress proteins of Escherichia coli function in an ordered protein-folding reaction and this sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.
Abstract: The main stress proteins of Escherichia coli function in an ordered protein-folding reaction. DnaK (heat-shock protein 70) recognizes the folding polypeptide as an extended chain and cooperates with DnaJ in stabilizing an intermediate conformational state lacking ordered tertiary structure. Dependent on GrpE and ATP hydrolysis, the protein is then transferred to GroEL (heat-shock protein 60) which acts catalytically in the production of the native state. This sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.

945 citations

Journal ArticleDOI
30 Jan 1992-Nature
TL;DR: A combination of biochemistry in animal cell-free systems and genetics in yeast is revealing the molecular machinery of the secretory pathway of eukaryotes.
Abstract: A combination of biochemistry in animal cell-free systems and genetics in yeast is revealing the molecular machinery of the secretory pathway of eukaryotes. Transporting vesicles have a simple coat structure and employ a general mechanism for fusion that is conserved in evolution.

926 citations


Authors

Showing all 6853 results

NameH-indexPapersCitations
Joan Massagué189408149951
Chris Sander178713233287
Timothy A. Springer167669122421
Murray F. Brennan16192597087
Charles M. Rice15456183812
Lloyd J. Old152775101377
Howard I. Scher151944101737
Paul Tempst14830989225
Pier Paolo Pandolfi14652988334
Barton F. Haynes14491179014
Jedd D. Wolchok140713123336
James P. Allison13748383336
Harold E. Varmus13749676320
Scott W. Lowe13439689376
David S. Klimstra13356461682
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

91% related

Washington University in St. Louis
163.7K papers, 10M citations

91% related

University of Pittsburgh
201K papers, 9.6M citations

91% related

Duke University
200.3K papers, 10.7M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202216
2021211
2020234
2019204
2018225