scispace - formally typeset
Institution

King Abdulaziz University

EducationJeddah, Saudi Arabia
About: King Abdulaziz University is a(n) education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topic(s): Population & Nonlinear system. The organization has 15461 authors who have published 44904 publication(s) receiving 1101565 citation(s). The organization is also known as: KAU & King Abdul Aziz University.


Papers
More filters
Journal ArticleDOI
TL;DR: An advanced version of the Molecular Evolutionary Genetics Analysis software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis, is released, which enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny.
Abstract: We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.

33,373 citations

Journal ArticleDOI
TL;DR: The latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine, has been optimized for use on 64-bit computing systems for analyzing larger datasets.
Abstract: We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.

25,894 citations

Journal ArticleDOI
TL;DR: The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine and has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses.
Abstract: The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

11,718 citations

Journal ArticleDOI
TL;DR: In this paper, an updated gridded climate dataset (referred to as CRU TS3.10) from monthly observations at meteorological stations across the world's land areas is presented.
Abstract: This paper describes the construction of an updated gridded climate dataset (referred to as CRU TS3.10) from monthly observations at meteorological stations across the world's land areas. Station anomalies (from 1961 to 1990 means) were interpolated into 0.5° latitude/longitude grid cells covering the global land surface (excluding Antarctica), and combined with an existing climatology to obtain absolute monthly values. The dataset includes six mostly independent climate variables (mean temperature, diurnal temperature range, precipitation, wet-day frequency, vapour pressure and cloud cover). Maximum and minimum temperatures have been arithmetically derived from these. Secondary variables (frost day frequency and potential evapotranspiration) have been estimated from the six primary variables using well-known formulae. Time series for hemispheric averages and 20 large sub-continental scale regions were calculated (for mean, maximum and minimum temperature and precipitation totals) and compared to a number of similar gridded products. The new dataset compares very favourably, with the major deviations mostly in regions and/or time periods with sparser observational data. CRU TS3.10 includes diagnostics associated with each interpolated value that indicates the number of stations used in the interpolation, allowing determination of the reliability of values in an objective way. This gridded product will be publicly available, including the input station series (http://www.cru.uea.ac.uk/ and http://badc.nerc.ac.uk/data/cru/). © 2013 Royal Meteorological Society

4,840 citations

Journal ArticleDOI
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4  +1025 moreInstitutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).
Abstract: Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries—Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NCDs) comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22·7% (21·5–23·9), representing an additional 7·61 million (7·20–8·01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7·9% (7·0–8·8). The number of deaths for CMNN causes decreased by 22·2% (20·0–24·0) and the death rate by 31·8% (30·1–33·3). Total deaths from injuries increased by 2·3% (0·5–4·0) between 2007 and 2017, and the death rate from injuries decreased by 13·7% (12·2–15·1) to 57·9 deaths (55·9–59·2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000–289 000) globally in 2007 to 352 000 (334 000–363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118·0% (88·8–148·6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36·4% (32·2–40·6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33·6% (31·2–36·1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respiratory infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990—neonatal disorders, lower respiratory infections, and diarrhoeal diseases—were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Funding Bill & Melinda Gates Foundation.

3,396 citations


Authors

Showing all 15461 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Michael Grätzel2481423303599
Eric N. Olson206814144586
Peidong Yang183562144351
Jiaguo Yu178730113300
Didier Raoult1733267153016
George P. Chrousos1691612120752
Jun Wang1661093141621
Vinod Kumar Gupta16571383484
William J. Sandborn1621317108564
Panos Deloukas162410154018
Dongyuan Zhao160872106451
Robert G. Webster15884390776
Roy F. Baumeister157650132987
Xiang Zhang1541733117576
Network Information
Related Institutions (5)
King Saud University
57.9K papers, 1M citations

97% related

Quaid-i-Azam University
16.8K papers, 381.6K citations

92% related

Mansoura University
23K papers, 344.7K citations

91% related

Cairo University
55.5K papers, 792.6K citations

91% related

Alexandria University
26.2K papers, 379.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022164
20215,845
20205,102
20194,117
20183,923
20174,245