scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an ad-sorption desalination (AD) and membrane distillation (MD) process can be driven by waste heat, geothermal or solar energy.

239 citations

Journal ArticleDOI
TL;DR: The impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems are surveyed, and the prospects for a coherent energy conversion system are speculated.
Abstract: Lessons learned from coherent phenomena in biological photosynthetic systems may be useful to improve energy- and charge-transport in disordered materials. This Review describes coherence and its potential beneficial effects in photovoltaics. The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder — structural and energetic — and from inherently strong electron–vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

238 citations

Journal ArticleDOI
TL;DR: A membrane-distillation device that exploits sunlight and the heat dissipated by an integrated solar cell unit, enabling simultaneous efficient production of electricity and drinkable water is developed.
Abstract: The energy shortage and clean water scarcity are two key challenges for global sustainable development. Near half of the total global water withdrawals is consumed by power generation plants while water desalination consumes lots of electricity. Here, we demonstrate a photovoltaics-membrane distillation (PV-MD) device that can stably produce clean water (>1.64 kg·m−2·h−1) from seawater while simultaneously having uncompromised electricity generation performance (>11%) under one Sun irradiation. Its high clean water production rate is realized by constructing multi stage membrane distillation (MSMD) device at the backside of the solar cell to recycle the latent heat of water vapor condensation in each distillation stage. This composite device can significantly reduce capital investment costs by sharing the same land and the same mounting system and thus represents a potential possibility to transform an electricity power plant from otherwise a water consumer to a fresh water producer. The increasing demand for energy and clean water has become a grand global challenge. Here the authors develop a membrane-distillation device that exploits sunlight and the heat dissipated by an integrated solar cell unit, enabling simultaneous efficient production of electricity and drinkable water.

238 citations

Journal ArticleDOI
TL;DR: The electronic properties of monolayer MoTe2 on top of EuO(111) are studied by first-principles calculations to find out how the direction of the Hall current as well as the valley and spin polarizations can be tuned by an external magnetic field.
Abstract: The electronic properties of monolayer MoTe2 on top of EuO(111) are studied by first-principles calculations. Strong spin polarization is induced in MoTe2 , which results in a large valley polarization. In a longitudinal electric field this will result in a valley and spin-polarized charge Hall effect. The direction of the Hall current as well as the valley and spin polarizations can be tuned by an external magnetic field.

238 citations

Posted Content
TL;DR: Simulation results show that RISs can outperform half-duplex relays with a small number of passive reflecting elements while large RISs are needed to outperform full-duple relays.
Abstract: This work focuses on the downlink of a single-cell multi-user system in which a base station (BS) equipped with $M$ antennas communicates with $K$ single-antenna users through a reconfigurable intelligent surface (RIS) installed in the line-of-sight (LoS) of the BS. RIS is envisioned to offer unprecedented spectral efficiency gains by utilizing $N$ passive reflecting elements that induce phase shifts on the impinging electromagnetic waves to smartly reconfigure the signal propagation environment. We study the minimum signal-to-interference-plus-noise ratio (SINR) achieved by the optimal linear precoder (OLP), that maximizes the minimum SINR subject to a given power constraint for any given RIS phase matrix, for the cases where the LoS channel matrix between the BS and the RIS is of rank-one and of full-rank. In the former scenario, the minimum SINR achieved by the RIS-assisted link is bounded by a quantity that goes to zero with $K$. For the high-rank scenario, we develop accurate deterministic approximations for the parameters of the asymptotically OLP, which are then utilized to optimize the RIS phase matrix. Simulation results show that RISs can outperform half-duplex relays with a small number of passive reflecting elements while large RISs are needed to outperform full-duplex relays.

238 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251