scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.


Papers
More filters
Journal ArticleDOI
TL;DR: Some coastal ecosystems (mangroves, tidal marshes and seagrass) are established Blue Carbon ecosystems as they often have high carbon stocks, support long-term carbon storage, offer the potential to manage greenhouse gas emissions and support other adaptation policies.
Abstract: Blue Carbon is a term coined in 2009 to draw attention to the degradation of marine and coastal ecosystems and the need to conserve and restore them to mitigate climate change and for the other ecosystem services they provide. Blue Carbon has multiple meanings, which we aim to clarify here, which reflect the original descriptions of the concept including (1) all organic matter captured by marine organisms, and (2) how marine ecosystems could be managed to reduce greenhouse gas emissions and thereby contribute to climate change mitigation and conservation. The multifaceted nature of the Blue Carbon concept has led to unprecedented collaboration across disciplines, where scientists, conservationists and policy makers have interacted intensely to advance shared goals. Some coastal ecosystems (mangroves, tidal marshes and seagrass) are established Blue Carbon ecosystems as they often have high carbon stocks, support long-term carbon storage, offer the potential to manage greenhouse gas emissions and support other adaptation policies. Some marine ecosystems do not meet key criteria for inclusion within the Blue Carbon framework (e.g. fish, bivalves and coral reefs). Others have gaps in scientific understanding of carbon stocks or greenhouse gas fluxes, or currently there is limited potential for management or accounting for carbon sequestration (macroalgae and phytoplankton), but may be considered Blue Carbon ecosystems in the future, once these gaps are addressed.

214 citations

Journal ArticleDOI
TL;DR: A deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead and demonstrate the superiority of the proposed solution over state-of-the-art solutions.
Abstract: Integrating large intelligent reflecting surfaces (IRS) into millimeter-wave (mmWave) massive multi-input-multi-ouput (MIMO) has been a promising approach for improved coverage and throughput. Most existing work assumes the ideal channel estimation, which can be challenging due to the high-dimensional cascaded MIMO channels and passive reflecting elements. Therefore, this paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems to reduce the training overhead. Specifically, we first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels. At the channel training stage, only a small proportion of elements will be successively activated to sound the partial channels. Moreover, the complete channel matrix can be reconstructed from the limited measurements based on compressive sensing, whereby the common sparsity of angular domain mmWave MIMO channels among different subcarriers is leveraged for improved accuracy. Besides, a complex-valued denoising convolution neural network (CV-DnCNN) is further proposed for enhanced performance. Simulation results demonstrate the superiority of the proposed solution over state-of-the-art solutions.

214 citations

Journal ArticleDOI
TL;DR: A new solar evaporator design concept offers a promising technology especially for high salinity brine treatment in desalination plants to achieve greener ZLD desalinating as well as for hypersaline industrial wastewater treatment.
Abstract: A sustainable supply of clean water is essential for the development of modern society, which has become increasingly dependent on desalination technology since 96.5% of the water on Earth is salt water. Thousands of desalination plants are producing massive waste brine as byproduct, and the direct discharge of brine raises serious concerns about its ecological impact. The concept of zero liquid discharge (ZLD) desalination is regarded as the solution, but the current ZLD technologies are hampered by their intensive use of energy and high cost. In this work, a 3D cup shaped solar evaporator was fabricated to achieve ZLD desalination with high energy efficiency via solar distillation. It produces solid salt as the only byproduct and uses sunlight as the only energy source. By rationally separating the light absorbing surface from the salt precipitation surface, the light absorption of the 3D solar evaporator is no longer affected by the salt crust layer as in conventional 2D solar evaporators. Therefore, i...

214 citations

Journal ArticleDOI
TL;DR: In low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant, and it is shown that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low- bandgap NFAs.
Abstract: In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor–acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor–NFA interface caused by the acceptors’ quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs. A systematic analysis of a series of donor–acceptor organic blends shows that in solar cells based on low-bandgap non-fullerene acceptors an ionization energy offset of about 0.5 eV is required to ensure efficient charge separation.

213 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the absorption and emission spectra from fullerene and charge transfer excitons, and estimated a driving free energy of −0.14 ± 0.06 eV is required for efficient hole transfer.
Abstract: Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC61BM. These devices achieve open-circuit voltages (Voc) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. Voc’s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of –0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with Voc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps (>1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of Voc exceeding 1.0 V.

213 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251