scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: The fabricated MOF-based sensor showed a notable detection sensitivity for NH3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO2.
Abstract: This work reports on the fabrication and deployment of a select metal–organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH3) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO2. Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH3, in contrast to other reported MOFs, and a remarkable detection selectivity toward NH3 vs CH4, NO2, H2, and C7H8. The N...

187 citations

Journal ArticleDOI
TL;DR: In this paper, a Ruddlesden-Popper (RP) perovskite heterostructure passivated by semiconducting molecules is reported, which systematically addresses both charge dynamics and degradation mechanisms in concert for cesium-free FAPbI3 solar cells, delivering a power-conversion efficiency as high as 20.62% and remarkable long-term ambient stability with a t80 lifetime exceeding 2880 hours without encapsulation.
Abstract: Ambient stability remains a critical hurdle for commercialization of perovskite solar cells. Two-dimensional Ruddlesden–Popper (RP) perovskite solar cells exhibit excellent stability but suffer from low photovoltaic performance so far. Herein, a RP/3D heterostructure passivated by semiconducting molecules is reported, which systematically addresses both charge dynamics and degradation mechanisms in concert for cesium-free FAPbI3 solar cells, delivering a power-conversion efficiency as high as 20.62% and remarkable long-term ambient stability with a t80 lifetime exceeding 2880 hours without encapsulation. In situ characterizations were carried out to gain insight into structural evolution and crystal growth mechanisms during spin coating. Comprehensive film and device characterizations were performed to understand the influences of the RP perovskite and molecule passivation on the film quality, photovoltaic performance and degradation mechanisms. This enables fabrication of a superior quality film with significantly improved optoelectronic properties, which lead to higher charge collection efficiency. The underlying mitigated degradation mechanisms of the passivated RP/3D devices were further elucidated. The understanding of the necessity of addressing both the charge dynamics and degradation mechanisms of solar cells will guide the future design and fabrication of chemically stable, high-efficiency photovoltaic devices.

187 citations

Journal ArticleDOI
17 Jan 2012-PLOS ONE
TL;DR: This work shows that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths and demonstrates that they provide rich feeding habitat for higher trophic marine life.
Abstract: Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

187 citations

Journal ArticleDOI
TL;DR: It is argued that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water that could replace HPC in routine water quality monitoring.

187 citations

Journal ArticleDOI
TL;DR: A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates.

187 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251