scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time, which consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macro void-free polyimide support and a novel bulky hydroacid complex Na 4 [Co(C 6 H 4 O 7 ) 2 ]·2H 2 O (Na-Co-CA) as the draw solute to minimize the reverse solute flux.

186 citations

Journal ArticleDOI
TL;DR: A theoretical model of rupture arrest indicates that most of the injection-induced earthquakes have been self-arrested, and theoretical estimates of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults are developed.
Abstract: Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

186 citations

Journal ArticleDOI
TL;DR: A new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions, and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.
Abstract: In the traditional molecular design of thermally activated delayed fluorescence (TADF) emitters composed of electron-donor and electron-acceptor moieties, achieving a small singlet-triplet energy gap (ΔEST ) in strongly twisted structures usually translates into a small fluorescence oscillator strength, which can significantly decrease the emission quantum yield and limit efficiency in organic light-emitting diode devices. Here, based on the results of quantum-chemical calculations on TADF emitters composed of carbazole donor and 2,4,6-triphenyl-1,3,5-triazine acceptor moieties, a new strategy is proposed for the molecular design of efficient TADF emitters that combine a small ΔEST with a large fluorescence oscillator strength. Since this strategy goes beyond the traditional framework of structurally twisted, charge-transfer type emitters, importantly, it opens the way for coplanar molecules to be efficient TADF emitters. Here, a new emitter, composed of azatriangulene and diphenyltriazine moieties, is theoretically designed, which is coplanar due to intramolecular H-bonding interactions. The synthesis of this hexamethylazatriangulene-triazine (HMAT-TRZ) emitter and its preliminary photophysical characterizations point to HMAT-TRZ as a potential efficient TADF emitter.

186 citations

Journal ArticleDOI
TL;DR: It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity and reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc1D compared with the wild type suggested that auxin delays senescences by directly or indirectly regulating the expression of senescENCE-associated genes.
Abstract: The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes.

186 citations

Journal ArticleDOI
07 Apr 2017-ACS Nano
TL;DR: A synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals, which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER).
Abstract: Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macro...

186 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251