scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.


Papers
More filters
Journal ArticleDOI
TL;DR: Inactivation of the TCA cycle enzyme, fumarate hydratase, drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer, resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors.

182 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.
Abstract: The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

182 citations

Journal ArticleDOI
TL;DR: The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition.
Abstract: Multifunctional microelectronic components featuring large stretchability, high sensitivity, high signal-to-noise ratio (SNR), and broad sensing range have attracted a huge surge of interest with the fast developing epidermal electronic systems. Here, the epidermal sensors based on all-carbon collaborative percolation network are demonstrated, which consist 3D graphene foam and carbon nanotubes (CNTs) obtained by two-step chemical vapor deposition processes. The nanoscaled CNT networks largely enhance the stretchability and SNR of the 3D microarchitectural graphene foams, endowing the strain sensor with a gauge factor as high as 35, a wide reliable sensing range up to 85%, and excellent cyclic stability (>5000 cycles). The flexible and reversible strain sensor can be easily mounted on human skin as a wearable electronic device for real-time and high accuracy detecting of electrophysiological stimuli and even for acoustic vibration recognition. The rationally designed all-carbon nanoarchitectures are scalable, low cost, and promising in practical applications requiring extraordinary stretchability and ultrahigh SNRs.

182 citations

Journal ArticleDOI
TL;DR: Tungsten carbide (on a small scale) is presented as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation.
Abstract: Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C(3)N(4) (mpg-C(3)N(4)) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W(2)C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H(2) and O(2) in a stoichiometric ratio from H(2)O decomposition when supported on a Na-doped SrTiO(3) photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation.

182 citations

Journal ArticleDOI
TL;DR: It is shown that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer, and this increased lipid content was clearly revealed by label‐free Raman spectroscopy and it directly correlates with well‐accepted CR‐CSC markers as CD133 and Wnt pathway activity.
Abstract: The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs. Stem Cells 2015;33:35–44

182 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251