scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a pseudocapacitive negative MXene (Ti3C2Tx) positive electrode was used to design an asymmetric device with a ruthenium oxide (RuO2)-positive electrode.
Abstract: 2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high-rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all-pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene-based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton-induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm−2 at a power density of 40 mW cm−2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon-based materials in asymmetric electrochemical capacitors, leading to an increased energy density.

664 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: Success depends on the acceptance and use of contemporary molecular techniques, as well as the increasing development of farming systems that use saline water and integrate nutrient flows.
Abstract: Population growth, arable land and fresh water limits, and climate change have profound implications for the ability of agriculture to meet this century’s demands for food, feed, fiber, and fuel while reducing the environmental impact of their production. Success depends on the acceptance and use of contemporary molecular techniques, as well as the increasing development of farming systems that use saline water and integrate nutrient flows.

663 citations

Journal ArticleDOI
24 Jan 2020
TL;DR: It is suggested that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric and high security, secrecy and privacy are its key features.
Abstract: The standardization of fifth generation (5G) communications has been completed, and the 5G network should be commercially launched in 2020. As a result, the visioning and planning of 6G communications has begun, with an aim to provide communication services for the future demands of the 2030s. Here, we provide a vision for 6G that could serve as a research guide in the post-5G era. We suggest that human-centric mobile communications will still be the most important application of 6G and the 6G network should be human centric. Thus, high security, secrecy and privacy should be key features of 6G and should be given particular attention by the wireless research community. To support this vision, we provide a systematic framework in which potential application scenarios of 6G are anticipated and subdivided. We subsequently define key potential features of 6G and discuss the required communication technologies. We also explore the issues beyond communication technologies that could hamper research and deployment of 6G. This Perspective provides a vision for sixth generation (6G) communications in which human-centric mobile communications are considered the most important application, and high security, secrecy and privacy are its key features.

663 citations

Posted Content
TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Abstract: What is a reconfigurable intelligent surface? What is a smart radio environment? What is a metasurface? How do metasurfaces work and how to model them? How to reconcile the mathematical theories of communication and electromagnetism? What are the most suitable uses and applications of reconfigurable intelligent surfaces in wireless networks? What are the most promising smart radio environments for wireless applications? What is the current state of research? What are the most important and challenging research issues to tackle? These are a few of the many questions that we investigate in this short opus, which has the threefold objective of introducing the emerging research field of smart radio environments empowered by reconfigurable intelligent surfaces, putting forth the need of reconciling and reuniting C. E. Shannon's mathematical theory of communication with G. Green's and J. C. Maxwell's mathematical theories of electromagnetism, and reporting pragmatic guidelines and recipes for employing appropriate physics-based models of metasurfaces in wireless communications.

663 citations

Journal ArticleDOI
22 Aug 2014-ACS Nano
TL;DR: An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications.
Abstract: A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g–1 at 5 A g–1 and 1285 F g–1 at 100 A g–1) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg–1 at a power density of 1.8 kW kg–1. Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg–1 at an outstanding power density of ...

661 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251