scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that metal-organic framework crystal chemistry permits the construction of an isostructural metal- organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 44 square grids pillared by silicon hexafluoride anions that offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance unachievable with other classes of porous materials.
Abstract: The capture and removal of low-concentration carbon dioxide from air is appealing. Here, the authors report a metal-organic framework with a precisely tuned network of pores and optimal charge density, which is capable of carbon dioxide uptake at very low partial pressures relevant to direct air capture.

481 citations

Journal ArticleDOI
TL;DR: This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives, and may be used to classify clinical isolates to evaluate tools to control the disease.
Abstract: Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92 k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7 k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type.

479 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a state-of-the-art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

479 citations

Journal ArticleDOI
TL;DR: The traditionally disadvantageous viscoelastic property of hydrogels can be transformed into an advantage for sensing, which reveals prospects for hydrogel sensors.
Abstract: The development of wearable electronics, point-of-care testing, and soft robotics requires strain sensors that are highly sensitive, stretchable, capable of adhering conformably to arbitrary and complex surfaces, and preferably self-healable. Conductive hydrogels hold great promise as sensing materials for these applications. However, their sensitivities are generally low, and they suffer from signal hysteresis and fluctuation due to their viscoelastic property, which can compromise their sensing performance. We demonstrate that hydrogel composites incorporating MXene (Ti3C2T x ) outperform all reported hydrogels for strain sensors. The obtained composite hydrogel [MXene-based hydrogel (M-hydrogel)] exhibits outstanding tensile strain sensitivity with a gauge factor (GF) of 25, which is 10 times higher than that of pristine hydrogel. Furthermore, the M-hydrogel exhibits remarkable stretchability of more than 3400%, an instantaneous self-healing ability, excellent conformability, and adhesiveness to various surfaces, including human skin. The M-hydrogel composite exhibits much higher sensitivity under compressive strains (GF of 80) than under tensile strains. We exploit this asymmetrical strain sensitivity coupled with viscous deformation (self-recoverable residual deformation) to add new dimensions to the sensing capability of hydrogels. Consequently, both the direction and speed of motions on the hydrogel surface can be detected conveniently. Based on this effect, M-hydrogel demonstrates superior sensing performance in advanced sensing applications. Thus, the traditionally disadvantageous viscoelastic property of hydrogels can be transformed into an advantage for sensing, which reveals prospects for hydrogel sensors.

478 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors reported the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxides/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes.
Abstract: Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 ...

477 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251