scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: A vertically aligned Ta(3)N(5) nanorod photoelectrode is fabricated by through-mask anodization and nitridation for water splitting to yield a high photocurrent density and one of the highest activities reported for photoanodes so far.
Abstract: A vertically aligned Ta(3)N(5) nanorod photoelectrode is fabricated by through-mask anodization and nitridation for water splitting. The Ta(3)N(5) nanorods, working as photoanodes of a photoelectrochemical cell, yield a high photocurrent density of 3.8 mA cm(-2) at 1.23 V versus a reversible hydrogen electrode under AM 1.5G simulated sunlight and an incident photon-to-current conversion efficiency of 41.3% at 440 nm, one of the highest activities reported for photoanodes so far.

351 citations

Journal ArticleDOI
TL;DR: In this paper, a double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant, and the structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP.

350 citations

Journal ArticleDOI
12 May 2021-Nature
TL;DR: In this paper, the metal-induced gap states (MIGS) were suppressed and degenerate states in the metal dichalcogenides (TMDs) spontaneously formed in contact with bismuth.
Abstract: Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4–7, energy barriers at the metal–semiconductor interface—which fundamentally lead to high contact resistance and poor current-delivery capability—have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore’s law. Electric contacts of semimetallic bismuth on monolayer semiconductors are shown to suppress metal-induced gap states and thus have very low contact resistance and a zero Schottky barrier height.

350 citations

Journal ArticleDOI
TL;DR: A new perspective to functionalizing PAF-1-SO3Ag and other types of advanced porous materials for highly selective adsorption of ethylene over ethane is suggested.
Abstract: In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types ...

349 citations

Journal ArticleDOI
TL;DR: A microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore-cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation.
Abstract: The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive Here we report a microporous metal-organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process

349 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251