scispace - formally typeset
Search or ask a question
Institution

King Abdullah University of Science and Technology

EducationJeddah, Saudi Arabia
About: King Abdullah University of Science and Technology is a education organization based out in Jeddah, Saudi Arabia. It is known for research contribution in the topics: Membrane & Catalysis. The organization has 6221 authors who have published 22019 publications receiving 625706 citations. The organization is also known as: KAUST.
Topics: Membrane, Catalysis, Fading, Population, Combustion


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a cost analysis of the reverse osmosis process and the main parameters influencing the total water cost produced by different desalination technologies, including capital and operating costs, as well as local incentives or subsidies.

1,132 citations

Journal ArticleDOI
TL;DR: A comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition and influence of defects on electronic structure and charge-carrier mobility is predicted by calculation and observed by electric transport measurement.
Abstract: Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition.

1,109 citations

Journal ArticleDOI
TL;DR: A combined theoretical and experimental study is presented to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production.
Abstract: The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm(-2) at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n(+)-p-p(+) silicon micropyramids achieved photocurrents up to 35 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

1,094 citations

Journal ArticleDOI
25 Jul 2014-ACS Nano
TL;DR: The demonstrated results of monolayer MoS2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices.
Abstract: We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices.

1,088 citations

Journal ArticleDOI
29 Mar 2017-ACS Nano
TL;DR: A carefully designed aqueous droplet light heating system along with a thorough mathematical procedure leads to a precise determination of internal light-to-heat conversion efficiency of a variety of nanomaterials, suggesting that MXene is a very promising light- to- Heat conversion material and thus deserves more research attention toward practical applications.
Abstract: MXene, a new series of 2D material, has been steadily advancing its applications to a variety of fields, such as catalysis, supercapacitor, molecular separation, electromagnetic wave interference shielding. This work reports a carefully designed aqueous droplet light heating system along with a thorough mathematical procedure, which combined leads to a precise determination of internal light-to-heat conversion efficiency of a variety of nanomaterials. The internal light-to-heat conversion efficiency of MXene, more specifically Ti3C2, was measured to be 100%, indicating a perfect energy conversion. Furthermore, a self-floating MXene thin membrane was prepared by simple vacuum filtration and the membrane, in the presence of a rationally chosen heat barrier, produced a light-to-water-evaporation efficiency of 84% under one sun irradiation, which is among the state of art energy efficiency for similar photothermal evaporation system. The outstanding internal light-to-heat conversion efficiency and great light...

1,079 citations


Authors

Showing all 6430 results

NameH-indexPapersCitations
Jian-Kang Zhu161550105551
Jean M. J. Fréchet15472690295
Kevin Murphy146728120475
Jean-Luc Brédas134102685803
Carlos M. Duarte132117386672
Kazunari Domen13090877964
Jian Zhou128300791402
Tai-Shung Chung11987954067
Donal D. C. Bradley11565265837
Lain-Jong Li11362758035
Hong Wang110163351811
Peng Wang108167254529
Juan Bisquert10745046267
Jian Zhang107306469715
Karl Leo10483242575
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022371
20212,836
20202,809
20192,544
20182,251