scispace - formally typeset
Search or ask a question
Institution

Kongu Engineering College

About: Kongu Engineering College is a based out in . It is known for research contribution in the topics: Cluster analysis & Control theory. The organization has 2001 authors who have published 1978 publications receiving 16923 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The fabricated electrospun polyurethane based nanocomposite scaffolds might be considered as a potent substitute for scaffolding damaged tissue due to their inherent physicochemical and blood compatibility properties.
Abstract: Electrospun polyurethane based nanocomposite scaffolds were fabricated by mixing with indhulekha oil. Scanning electron microscope (SEM) portrayed the nanofibrous nature of the composite and the average diameters of the composite scaffold were smaller than the pristine scaffolds. The fabricated scaffold was found to be hydrophobic (114°) due to the inclusion of indhulekha oil, which was displayed in contact angle measurement analysis. The fourier transform infrared spectroscopy (FTIR) results indicated that the indhulekha oil was dispersed in PU matrix identified by formation of hydrogen bond and peak shifting of CH group. The PU/indhulekha oil nanocomposite exhibits a higher decomposition onset temperature and also residual weight percentage at 900°C was more compared to the pure PU. Surface roughness was found to be increased in the composite compared to the pristine PU as indicated by the atomic force microscopy (AFM) analysis. In order to investigate the blood compatibility of electrospun nanocomposites the activated partial thromboplastin time (APTT) assay, prothrombin time (PT) assay and hemolytic assay were performed. The blood compatibility results APTT and PT revealed that the developed nanocomposites demonstrated delayed clotting time indicating the anticoagulant nature of the composite in comparison with the pristine PU. Further, it was also observed that the hemolytic index of nanocomposites was reduced compared to pure PU suggesting the non-hemolytic nature of the fabricated scaffold. Hence, the fabricated nanocomposites might be considered as a potent substitute for scaffolding damaged tissue due to their inherent physicochemical and blood compatibility properties.

26 citations

Journal ArticleDOI
TL;DR: The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature.
Abstract: In this present study, the biosorption of Cr(VI) and Zn(II) ions from synthetic aqueous solution on defatted J atropha oil cake (DJOC) was investigated. The effect of various process parameters such as the initial pH, adsorbent dosage, initial metal ion concentration and contact time has been studied in batch-stirred experiments. Maximum removal of Cr(VI) and Zn(II) ions in aqueous solution was observed at pH 2.0 and pH. 5.0, respectively. The removal efficiency of Cr(VI) and Zn(II) ions from the aqueous solution was found to be 72.56 and 79.81%, respectively, for initial metal ion concentration of 500 mg/L at 6 g/L dosage concentration. The biosorbent was characterized by Fourier transform infrared, scanning electron microscopy and zero point charge. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models and the best fit is found to be with the Freundlich isotherm for both Cr(VI) and Zn(II) metal ions. The kinetic data obtained at different metal ion concentration have been analysed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and were found to follow the pseudo-second-order kinetic model. The values of mass transfer diffusion coefficients (De) were determined by Boyd model and compared with literature values. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were analysed using the equilibrium constant values (Ke) obtained from experimental data at different temperatures. The results showed that biosorption of Cr(VI) and Zn(II) ions onto the DJOC system is more spontaneous and exothermic in nature. The results indicate that DJOC was shown to be a promising adsorbent for the removal of Cr(VI) and Zn(II) ions from aqueous solution.

25 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of furans in natural ester oils using nanocarriers were studied and positive results from the study indicated the ability of antioxidants to resist furan derivatives.
Abstract: Nanoscience and technology have grown manifold ever since its inception into the world of technology. The technological marvel has led to the study of new areas in nanoparticles and nanocarriers. An attempt is made to research in one such area of electrical engineering in this paper — to study the effects of furans in natural ester oils using nanocarriers. By experimenting with a total of 54 samples, the research derives positive results from the study and indicate the ability of antioxidants to resist furan derivatives. Further, the outcome of the research also indicates a strong inverse correlation of antioxidants in natural esters can be used as the biodegradable choice for the transformer insulation.

25 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model was developed to predict the tensile strength friction stir welded Al/B4C joints using SYSTAT software, the optimal process parameters were estimated from the developed regression equation using Generalized Reduced Gradient (GRG) method.

25 citations

Journal ArticleDOI
TL;DR: In this article, a novel fabrication technique to fabricate hybrid cermets using Al 6061 alloy with nano-sized SiC, Al2O3 and TiO2 as reinforcements was presented.
Abstract: This study emphasis on a novel fabrication technique to fabricate hybrid cermets using Al 6061 alloy with nano sized SiC, Al2O3 and TiO2 as reinforcements. During the fabrication process, the melted pool was ultrasonicated to disperse nanoparticles at 20 kHz for 5 min and pressure of 50 MPa was applied to eliminate voids. The influence of nanoparticles on physical, thermal and mechanical properties were evaluated by tensile, wear and thermal studies. Cermets with Al2O3 reinforcements showed higher mechanical performance compared to Al alloy. This enhancement could be related to the uniform distribution of Al2O3 with refinement in grain size of Al alloy which was observed via surface analysis. The morphological studies provided justifiable evidence of homogeneous distribution, nominal cluster along with agglomeration and cavities shrinking on the cermets. The agglomeration of nanoparticles along with SiC protected the cermet in corrosion and abrasive wear by ~ 97% and ~ 71%. The study evidenced the novel fabrication method using ultrasonic rheo-squeeze casting led to improvement in mechanical and thermal properties of the hybrid cermets.

25 citations


Authors
Network Information
Related Institutions (5)
Anna University
19.9K papers, 312.6K citations

89% related

VIT University
24.4K papers, 261.8K citations

89% related

National Institute of Technology, Rourkela
10.7K papers, 150.1K citations

88% related

SRM University
11.7K papers, 103.7K citations

88% related

Thapar University
8.5K papers, 130.3K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202221
2021572
2020234
2019121
2018143
2017136