scispace - formally typeset
Search or ask a question
Institution

Konrad Lorenz Institute for Evolution and Cognition Research

OtherKlosterneuburg, Austria
About: Konrad Lorenz Institute for Evolution and Cognition Research is a other organization based out in Klosterneuburg, Austria. It is known for research contribution in the topics: Philosophy of biology & Population. The organization has 105 authors who have published 282 publications receiving 10639 citations. The organization is also known as: KLI.


Papers
More filters
Journal ArticleDOI
TL;DR: The powerful visualization tools of geometric morphometrics and the typically large amount of shape variables give rise to a specific exploratory style of analysis, allowing the identification and quantification of previously unknown shape features.
Abstract: Geometric morphometrics is the statistical analysis of form based on Cartesian landmark coordinates. After separating shape from overall size, position, and orientation of the landmark configurations, the resulting Procrustes shape coordinates can be used for statistical analysis. Kendall shape space, the mathematical space induced by the shape coordinates, is a metric space that can be approximated locally by a Euclidean tangent space. Thus, notions of distance (similarity) between shapes or of the length and direction of developmental and evolutionary trajectories can be meaningfully assessed in this space. Results of statistical techniques that preserve these convenient properties—such as principal component analysis, multivariate regression, or partial least squares analysis—can be visualized as actual shapes or shape deformations. The Procrustes distance between a shape and its relabeled reflection is a measure of bilateral asymmetry. Shape space can be extended to form space by augmenting the shape coordinates with the natural logarithm of Centroid Size, a measure of size in geometric morphometrics that is uncorrelated with shape for small isotropic landmark variation. The thin-plate spline interpolation function is the standard tool to compute deformation grids and 3D visualizations. It is also central to the estimation of missing landmarks and to the semilandmark algorithm, which permits to include outlines and surfaces in geometric morphometric analysis. The powerful visualization tools of geometric morphometrics and the typically large amount of shape variables give rise to a specific exploratory style of analysis, allowing the identification and quantification of previously unknown shape features.

1,017 citations

Journal ArticleDOI
Emek Demir1, Emek Demir2, Michael P. Cary1, Suzanne M. Paley3, Ken Fukuda, Christian Lemer4, Imre Vastrik, Guanming Wu5, Peter D'Eustachio6, Carl F. Schaefer7, Joanne S. Luciano, Frank Schacherer, Irma Martínez-Flores8, Zhenjun Hu9, Verónica Jiménez-Jacinto8, Geeta Joshi-Tope10, Kumaran Kandasamy11, Alejandra López-Fuentes8, Huaiyu Mi3, Elgar Pichler, Igor Rodchenkov12, Andrea Splendiani13, Andrea Splendiani14, Sasha Tkachev15, Jeremy Zucker16, Gopal R. Gopinath17, Harsha Rajasimha7, Harsha Rajasimha18, Ranjani Ramakrishnan19, Imran Shah20, Mustafa H Syed21, Nadia Anwar1, Özgün Babur2, Özgün Babur1, Michael L. Blinov22, Erik Brauner23, Dan Corwin, Sylva L. Donaldson12, Frank Gibbons23, Robert N. Goldberg24, Peter Hornbeck15, Augustin Luna7, Peter Murray-Rust25, Eric K. Neumann, Oliver Reubenacker22, Matthias Samwald26, Matthias Samwald27, Martijn P. van Iersel28, Sarala M. Wimalaratne29, Keith Allen30, Burk Braun, Michelle Whirl-Carrillo31, Kei-Hoi Cheung32, Kam D. Dahlquist33, Andrew Finney, Marc Gillespie34, Elizabeth M. Glass21, Li Gong31, Robin Haw5, Michael Honig35, Olivier Hubaut4, David W. Kane36, Shiva Krupa37, Martina Kutmon38, Julie Leonard30, Debbie Marks23, David Merberg39, Victoria Petri40, Alexander R. Pico41, Dean Ravenscroft42, Liya Ren10, Nigam H. Shah31, Margot Sunshine7, Rebecca Tang30, Ryan Whaley30, Stan Letovksy43, Kenneth H. Buetow7, Andrey Rzhetsky44, Vincent Schächter45, Bruno S. Sobral18, Ugur Dogrusoz2, Shannon K. McWeeney19, Mirit I. Aladjem7, Ewan Birney, Julio Collado-Vides8, Susumu Goto46, Michael Hucka47, Nicolas Le Novère, Natalia Maltsev21, Akhilesh Pandey11, Paul Thomas3, Edgar Wingender, Peter D. Karp3, Chris Sander1, Gary D. Bader12 
TL;DR: Thousands of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases, and this large amount of pathway data in a computable form will support visualization, analysis and biological discovery.
Abstract: Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

673 citations

Journal ArticleDOI
TL;DR: The aim of the ecospat package is to make available novel tools and methods to support spatial analyses and modeling of species niches and distributions in a coherent workflow and stimulate the use of comprehensive approaches in spatial modelling of species and community distributions.
Abstract: The aim of the ecospat package is to make available novel tools and methods to support spatial analyses and modeling of species niches and distributions in a coherent workflow. The package is written in the R language (R Development Core Team 2016) and contains several features, unique in their implementation, that are complementary to other existing R packages. Pre-modeling analyses include species niche quantifications and comparisons between distinct ranges or time periods, measures of phylogenetic diversity, and other data exploration functionalities (e.g. extrapolation detection, ExDet). Core modeling brings together the new approach of Ensemble of Small Models (ESM) and various implementations of the spatially-explicit modeling of species assemblages (SESAM) framework. Post-modeling analyses include evaluation of species predictions based on presence-only data (Boyce index) and of community predictions, phylogenetic diversity and environmentally-constrained species co-occurrences analyses. The ecospat package also provides some functions to supplement the biomod2 package (e.g. data preparation, permutation tests and cross-validation of model predictive power). With this novel package, we intend to stimulate the use of comprehensive approaches in spatial modelling of species and community distributions. This article is protected by copyright. All rights reserved.

618 citations

Journal ArticleDOI
TL;DR: This essay identifies major theoretical themes of current evo–devo research and highlights how its results take evolutionary theory beyond the boundaries of the Modern Synthesis.
Abstract: Evolutionary developmental biology (evo-devo) explores the mechanistic relationships between the processes of individual development and phenotypic change during evolution. Although evo-devo is widely acknowledged to be revolutionizing our understanding of how the development of organisms has evolved, its substantial implications for the theoretical basis of evolution are often overlooked. This essay identifies major theoretical themes of current evo-devo research and highlights how its results take evolutionary theory beyond the boundaries of the Modern Synthesis.

499 citations

Journal ArticleDOI
TL;DR: A general methodological framework by which missing information about biological specimens can be estimated using geometric morphometric methods is outlined and how this relates to effective paleoanthropological use of incomplete and distorted crania is discussed.

376 citations


Authors

Showing all 107 results

Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

84% related

Hebrew University of Jerusalem
100K papers, 3.9M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

83% related

University of Oxford
258.1K papers, 12.9M citations

83% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20225
202138
202022
201923
201822