scispace - formally typeset
Search or ask a question
Institution

Korea Electrotechnology Research Institute

NonprofitChangwon, South Korea
About: Korea Electrotechnology Research Institute is a nonprofit organization based out in Changwon, South Korea. It is known for research contribution in the topics: Electromagnetic coil & Anode. The organization has 1701 authors who have published 2914 publications receiving 47578 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This critical review of metal-organic frameworks (MOFs) highlights advances in MOF synthesis focusing on linker design and examples of building MOFs to reach unique properties, such as unprecedented surface area, pore aperture, molecular recognition, stability, and catalysis, through linkers are described.
Abstract: Metal–organic frameworks (MOFs) are constructed from metal ions/clusters coordinated by organic linkers (or bridging-ligands). The hallmark of MOFs is their permanent porosity, which is frequently found in MOFs constructed from metal-clusters. These clusters are often formed in situ, whereas the linkers are generally pre-formed. The geometry and connectivity of a linker dictate the structure of the resulting MOF. Adjustments of linker geometry, length, ratio, and functional-group can tune the size, shape, and internal surface property of a MOF for a targeted application. In this critical review, we highlight advances in MOF synthesis focusing on linker design. Examples of building MOFs to reach unique properties, such as unprecedented surface area, pore aperture, molecular recognition, stability, and catalysis, through linker design are described. Further search for application-oriented MOFs through judicious selection of metal clusters and organic linkers is desirable. In this review, linkers are categorized as ditopic (Section 1), tritopic (Section 2), tetratopic (Section 3), hexatopic (Section 4), octatopic (Section 5), mixed (Section 6), desymmetrized (Section 7), metallo (Section 8), and N-heterocyclic linkers (Section 9).

1,647 citations

Journal ArticleDOI
TL;DR: This review suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto -electronic switch and memory.
Abstract: While organic electronics is mostly dominated by light-emitting diodes, photovoltaic cells and transistors, optoelectronics properties peculiar to organic semiconductors make them interesting candidates for the development of innovative and disruptive applications also in the field of light signal detection. In fact, organic-based photoactive media combine effective light absorption in the region of the spectrum from ultraviolet to near-infrared with good photogeneration yield and low-temperature processability over large areas and on virtually every substrate, which might enable innovative optoelectronic systems to be targeted for instance in the field of imaging, optical communications or biomedical sensing. In this review, after a brief resume of photogeneration basics and of devices operation mechanisms, we offer a broad overview of recent progress in the field, focusing on photodiodes and phototransistors. As to the former device category, very interesting values for figures of merit such as photoconversion efficiency, speed and minimum detectable signal level have been attained, and even though the simultaneous optimization of all these relevant parameters is demonstrated in a limited number of papers, real applications are within reach for this technology, as it is testified by the increasing number of realizations going beyond the single-device level and tackling more complex optoelectronic systems. As to phototransistors, a more recent subject of study in the framework of organic electronics, despite a broad distribution in the reported performances, best photoresponsivities outperform amorphous silicon-based devices. This suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto-electronic switch and memory.

1,081 citations

Journal ArticleDOI
TL;DR: Graphite oxide samples were prepared by a simplified Brodie method and AB stacking of the layers in the GO was inferred from an electron diffraction study, which suggests that carboxyl and alkyl groups are at the edges of the flakes of graphite oxide.
Abstract: Graphite oxide (GO) samples were prepared by a simplified Brodie method. Hydroxyl, epoxide, carboxyl, and some alkyl functional groups are present in the GO, as identified by solid-state 13C NMR, Fourier-transform infrared spectroscopy, and X-ray photoemission spectroscopy. Starting with pyrolytic graphite (interlayer separation 3.36 A), the average interlayer distance after 1 h of reaction, as determined by X-ray diffraction, increased to 5.62 A and then increased with further oxidation to 7.37 A after 24 h. A smaller signal in 13C CPMAS NMR compared to that in 13C NMR suggests that carboxyl and alkyl groups are at the edges of the flakes of graphite oxide. Other aspects of the chemical bonding were assessed from the NMR and XPS data and are discussed. AB stacking of the layers in the GO was inferred from an electron diffraction study. The elemental composition of GO prepared using this simplified Brodie method is further discussed.

1,005 citations

Journal ArticleDOI
TL;DR: Recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon.
Abstract: For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays.

476 citations

Journal ArticleDOI
TL;DR: A transparent and stretchable all-graphene multifunctional electronic-skin sensor matrix is developed that combines humidity, thermal, and pressure sensors into a layer-by-layer geometry through a simple lamination process.
Abstract: A transparent and stretchable all-graphene multifunctional electronic-skin sensor matrix is developed. Three different functional sensors are included in this matrix: humidity, thermal, and pressure sensors. These are judiciously integrated into a layer-by-layer geometry through a simple lamination process.

466 citations


Authors

Showing all 1710 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Young Hee Lee122116861107
Guoxiu Wang11765446145
Jeong Ho Cho5839914598
Bing Sun501407335
Jaewon Lee472048680
Jan Abraham Ferreira423768216
Yuanzhi Li42945437
Ho Sung Kim412284913
Sun-Jae Kim412315519
Henk Polinder402438731
Kang-Jun Baeg381146195
Jung-Wook Park352304387
Cheol-Woong Yang352045854
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

88% related

Hanyang University
58.8K papers, 1.1M citations

88% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Sungkyunkwan University
56.4K papers, 1.3M citations

86% related

Samsung
163.6K papers, 2M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202223
2021152
2020148
2019144
2018144