scispace - formally typeset
Search or ask a question
Institution

Korea University

EducationSeoul, South Korea
About: Korea University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 39756 authors who have published 82424 publications receiving 1860927 citations. The organization is also known as: Bosung College & Bosung Professional College.


Papers
More filters
Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +459 moreInstitutions (49)
TL;DR: In this paper, the scaling of elliptic flow (v(2) with eccentricity, system size, and transverse kinetic energy (KET) was shown to be compatible with hydrodynamic expansion of thermalized fluid.
Abstract: Differential measurements of elliptic flow (v(2)) for Au+Au and Cu+Cu collisions at root s(NN)=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v(2) with eccentricity, system size, and transverse kinetic energy (KET). For KET equivalent to m(T)-m up to similar to 1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KET mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v(2) for both mesons and baryons over the full KET range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KET, rather than transverse momentum.

333 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptotic deactivation of myofibiablasts.
Abstract: Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.

332 citations

Journal ArticleDOI
TL;DR: The results suggest that GLIP1, in association with ethylene signaling, may be a critical component in plant resistance to A. brassicicola.
Abstract: The Arabidopsis thaliana secretome was analyzed by the proteomic approach, which led to the identification of secreted proteins implicated in many aspects of cell biology. We then investigated the change in the Arabidopsis secretome in response to salicylic acid and identified several proteins involved in pathogen response. One of these, a secreted lipase with a GDSL-like motif designated GDSL LIPASE1 (GLIP1), was further characterized for its function in disease resistance. glip1 plants were markedly more susceptible to infection by the necrotrophic fungus Alternaria brassicicola compared with the parental wild-type plants. The recombinant GLIP1 protein possessed lipase and antimicrobial activities that directly disrupt fungal spore integrity. Furthermore, GLIP1 appeared to trigger systemic resistance signaling in plants when challenged with A. brassicicola, because pretreatment of the glip1 mutant with recombinant GLIP1 protein inhibited A. brassicicola-induced cell death in both peripheral and distal leaves. Moreover, glip1 showed altered expression of defense- and ethylene-related genes. GLIP1 transcription was increased by ethephon, the ethylene releaser, but not by salicylic acid or jasmonic acid. These results suggest that GLIP1, in association with ethylene signaling, may be a critical component in plant resistance to A. brassicicola.

331 citations

Journal ArticleDOI
TL;DR: Results show the selectivity of ethylene to methane in O- Cu combination catalysts is influenced by the electrochemical reduction environment related to the mixed valences, which will provide new strategies to improve durability of O-Cu combination catalyststs for C-C coupling products from electrochemical CO2 conversion.
Abstract: Oxygen–Cu (O–Cu) combination catalysts have recently achieved highly improved selectivity for ethylene production from the electrochemical CO2 reduction reaction (CO2RR). In this study, we developed anodized copper (AN-Cu) Cu(OH)2 catalysts by a simple electrochemical synthesis method and achieved ∼40% Faradaic efficiency for ethylene production, and high stability over 40 h. Notably, the initial reduction conditions applied to AN-Cu were critical to achieving selective and stable ethylene production activity from the CO2RR, as the initial reduction condition affects the structures and chemical states, crucial for highly selective and stable ethylene production over methane. A highly negative reduction potential produced a catalyst maintaining long-term stability for the selective production of ethylene over methane, and a small amount of Cu(OH)2 was still observed on the catalyst surface. Meanwhile, when a mild reduction condition was applied to the AN-Cu, the Cu(OH)2 crystal structure and mixed states d...

331 citations

Journal ArticleDOI
TL;DR: Up-to-date see-through 3D display is a concept close to the ultimate goal of presenting seamless virtual images, although it is still far from practical use, many efforts have been made to resolve issues such as occlusion problems.
Abstract: Recent trends in three-dimensional (3D) display technologies are very interesting in that both old-fashioned and up-to-date technologies are being actively investigated together. The release of the first commercially successful 3D display product raised new research topics in stereoscopic display. Autostereoscopic display renders a ray field of a 3D image, whereas holography replicates a wave field of it. Many investigations have been conducted on the next candidates for commercial products to resolve existing limitations. Up-to-date see-through 3D display is a concept close to the ultimate goal of presenting seamless virtual images. Although it is still far from practical use, many efforts have been made to resolve issues such as occlusion problems.

331 citations


Authors

Showing all 40083 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Daniel S. Berman141136386136
Christof Koch141712105221
David Y. Graham138104780886
Suyong Choi135149597053
Rudolph E. Tanzi13563885376
Sung Keun Park133156796933
Tae Jeong Kim132142093959
Robert S. Brown130124365822
Mohammad Khaja Nazeeruddin12964685630
Klaus-Robert Müller12976479391
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Yonsei University
106.1K papers, 2.2M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

98% related

Seoul National University
138.7K papers, 3.7M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023121
2022611
20216,359
20206,208
20195,608
20185,088