scispace - formally typeset
Search or ask a question
Institution

Korea University

EducationSeoul, South Korea
About: Korea University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 39756 authors who have published 82424 publications receiving 1860927 citations. The organization is also known as: Bosung College & Bosung Professional College.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the preferred orientation of the transition dipole moments of heteroleptic iridium complexes (HICs) in organic light-emitting diodes (OLEDs) was investigated.
Abstract: Organic light-emitting diodes (OLEDs) are among the most promising organic semiconductor devices. The recently reported external quantum efficiencies (EQEs) of 29-30% for green and blue phosphorescent OLEDs are considered to be near the limit for isotropically oriented iridium complexes. The preferred orientation of transition dipole moments has not been thoroughly considered for phosphorescent OLEDs because of the lack of an apparent driving force for a molecular arrangement in all but a few cases, even though horizontally oriented transition dipoles can result in efficiencies of over 30%. Here we use quantum chemical calculations to show that the preferred orientation of the transition dipole moments of heteroleptic iridium complexes (HICs) in OLEDs originates from the preferred direction of the HIC triplet transition dipole moments and the strong supramolecular arrangement within the co-host environment. We also demonstrate an unprecedentedly high EQE of 35.6% when using HICs with phosphorescent transition dipole moments oriented in the horizontal direction.

326 citations

Journal ArticleDOI
TL;DR: The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain.

326 citations

Journal ArticleDOI
TL;DR: It is shown with expression profiling that overexpression of virAG resulted in transcriptional activation of ∼60 genes, including some involved in capsule production, actin‐based intracellular motility, and type VI secretion (T6S) in hamsters, and BMAA0742 was secreted by the T6S system when virAG was overexpressed.
Abstract: : Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown. Here we show with expression profiling that overexpression of virAG resulted in transcriptional activation of approximately 60 genes, including some involved in capsule production, actin-based intracellular motility, and type VI secretion (T6S). The 15 genes encoding the major sugar component of the homopolymeric capsule were up-expressed > 2.5-fold, but capsule was still produced in the absence of virAG. Actin tail formation required virAG as well as bimB, bimC and bimE, three previously uncharacterized genes that were activated four- to 15-fold when VirAG was overproduced. Surprisingly, actin polymerization was found to be dispensable for virulence in hamsters. In contrast, genes encoding a T6S system were up-expressed as much as 30-fold and mutations in this T6S gene cluster resulted in strains that were avirulent in hamsters. SDS-PAGE and mass spectrometry demonstrated that BMAA0742 was secreted by the T6S system when virAG was overexpressed. Purified His-tagged BMAA0742 was recognized by glanders antiserum from a horse, a human and mice, indicating that this Hcp-family protein is produced in vivo during infection.

326 citations

Journal ArticleDOI
TL;DR: In this paper, epigallocatechin-3-gallate (EGCG) was identified as a histone acetyltransferase inhibitor (HATi) with global specificity for the majority of HAT enzymes but with no activity toward epigenetic enzymes including HDAC, SIRT1, and HMTase.
Abstract: Because the p300/CBP-mediated hyperacetylation of RelA (p65) is critical for nuclear factor-kappaB (NF-kappaB) activation, the attenuation of p65 acetylation is a potential molecular target for the prevention of chronic inflammation. During our ongoing screening study to identify natural compounds with histone acetyltransferase inhibitor (HATi) activity, we identified epigallocatechin-3-gallate (EGCG) as a novel HATi with global specificity for the majority of HAT enzymes but with no activity toward epigenetic enzymes including HDAC, SIRT1, and HMTase. At a dose of 100 micromol/L, EGCG abrogates p300-induced p65 acetylation in vitro and in vivo, increases the level of cytosolic IkappaBalpha, and suppresses tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. We also showed that EGCG prevents TNFalpha-induced p65 translocation to the nucleus, confirming that hyperacetylation is critical for NF-kappaB translocation as well as activity. Furthermore, EGCG treatment inhibited the acetylation of p65 and the expression of NF-kappaB target genes in response to diverse stimuli. Finally, EGCG reduced the binding of p300 to the promoter region of interleukin-6 gene with an increased recruitment of HDAC3, which highlights the importance of the balance between HATs and histone deacetylases in the NF-kappaB-mediated inflammatory signaling pathway. Importantly, EGCG at 50 micromol/L dose completely blocks EBV infection-induced cytokine expression and subsequently the EBV-induced B lymphocyte transformation. These results show the crucial role of acetylation in the development of inflammatory-related diseases.

325 citations

Journal ArticleDOI
TL;DR: This tutorial review highlights the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications.
Abstract: The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.

325 citations


Authors

Showing all 40083 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Daniel S. Berman141136386136
Christof Koch141712105221
David Y. Graham138104780886
Suyong Choi135149597053
Rudolph E. Tanzi13563885376
Sung Keun Park133156796933
Tae Jeong Kim132142093959
Robert S. Brown130124365822
Mohammad Khaja Nazeeruddin12964685630
Klaus-Robert Müller12976479391
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Yonsei University
106.1K papers, 2.2M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

98% related

Seoul National University
138.7K papers, 3.7M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023121
2022611
20216,359
20206,208
20195,608
20185,088