scispace - formally typeset
Search or ask a question
Institution

Korea University

EducationSeoul, South Korea
About: Korea University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Catalysis. The organization has 39756 authors who have published 82424 publications receiving 1860927 citations. The organization is also known as: Bosung College & Bosung Professional College.
Topics: Population, Catalysis, Thin film, Cancer, Medicine


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a three-dimensional, extrinsically enriched meshfree method for initiation, branching, growth and coalescence of an arbitrary number of cracks in non-linear solids including large deformations, for statics and dynamics is presented.

352 citations

Journal ArticleDOI
Tak-Hyun Kim1, Chulhwan Park1, Jeongmok Yang2, Jeongmok Yang1, Sangyong Kim1 
TL;DR: Reactive dye solutions have higher applicability of Fenton oxidation than disperse dye solutions due to their higher solubility, lower suspended solids concentrations and higher SCOD/TCOD ratios.

352 citations

Journal ArticleDOI
TL;DR: The cytokine-serotonin interaction that leads to the challenge between quinolinate and kynurenate in the brain explains the neurodegeneration hypothesis of depression.

352 citations

Journal ArticleDOI
TL;DR: In this paper, the potential use of wood-based biochar (WB) for the removal of potentially toxic elements (PTEs) from water and wastewater has been discussed, and a review demonstrates the overarching scientific opportunities for a comprehensive understanding of using WB as an emerging biosorbent and a promising low-cost and effective material for the remediation of contaminated water.
Abstract: Recently, biochar has received significant attention, especially for the removal of potentially toxic elements (PTEs) from water and wastewater. No review has been focused on the potential use of wood-based biochar (WB) for the removal of PTEs in water and wastewater. Here, we have critically reviewed the (i) preparation and characterisation of WB; (ii) removal efficiency of WB for PTEs in water with respect to its physicochemical characteristics, biochar/water ratio, pH, and sorption system; (iii) removal mechanisms of PTEs by WB; (iv) fate of the sorbed PTEs onto WB; and (v) recovery of the sorbed PTEs from the resultant sludge of WB. We also discussed the removal of PTEs by engineered/designer WB as compared to pristine WB. This review demonstrates the overarching scientific opportunities for a comprehensive understanding of using WB as an emerging biosorbent and a promising low-cost and effective material for the remediation of PTEs contaminated water.

350 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: This paper proposes a content caching scheme, WAVE, in which the number of chunks to be cached is adjusted based on the popularity of the content, which achieves higher cache hit ratio and fewer frequent cache replacements than other on-demand caching strategies.
Abstract: In content-oriented networking, content files are typically cached in network nodes, and hence how to cache content files is crucial for the efficient content delivery and cache storage utilization. In this paper, we propose a content caching scheme, WAVE, in which the number of chunks to be cached is adjusted based on the popularity of the content. In WAVE, an upstream node recommends the number of chunks to be cached at its downstream node, which is exponentially increased as the request count increases. Simulation results reveal that the average hop count of content delivery of WAVE is lower than other schemes, and the inter-ISP traffic volume of WAVE is the second lowest (CDN is the lowest). Also, WAVE achieves higher cache hit ratio and fewer frequent cache replacements than other on-demand caching strategies.

349 citations


Authors

Showing all 40083 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Daniel S. Berman141136386136
Christof Koch141712105221
David Y. Graham138104780886
Suyong Choi135149597053
Rudolph E. Tanzi13563885376
Sung Keun Park133156796933
Tae Jeong Kim132142093959
Robert S. Brown130124365822
Mohammad Khaja Nazeeruddin12964685630
Klaus-Robert Müller12976479391
Network Information
Related Institutions (5)
Sungkyunkwan University
56.4K papers, 1.3M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Yonsei University
106.1K papers, 2.2M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

98% related

Seoul National University
138.7K papers, 3.7M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023121
2022611
20216,359
20206,208
20195,608
20185,088