scispace - formally typeset
Search or ask a question

Showing papers by "Kumamoto University published in 2003"


Journal ArticleDOI
TL;DR: It is shown that replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis, and this is the first demonstration that globular leptin can protect against Atherosclerosis in vivo.

943 citations


Journal ArticleDOI
TL;DR: This work has shown that Ror2 possesses an extracellular cysteine‐rich domain (CRD) that resembles the Wnt‐binding sites of the Frizzled (Fz) proteins, and it is conceivable that ROr2 interacts with members of the WNT family.
Abstract: Background: Ror2 is an orphan receptor, belonging to the Ror family of receptor tyrosine kinases. Although Ror2 has been shown to play crucial roles in developmental morphogenesis, the precise signalling events that Ror2 mediates remain elusive. Since Ror2 possesses an extracellular cysteine-rich domain (CRD) that resembles the Wnt-binding sites of the Frizzled (Fz) proteins, it is conceivable that Ror2 interacts with members of the Wnt family. Results: Both Ror2−/− and Wnt5a−/− mice exhibit dwarfism, facial abnormalities, short limbs and tails, dysplasia of lungs and genitals, and ventricular septal defects. In vitro binding assay revealed that Wnt5a binds to the CRD of Ror2. Furthermore, Ror2 associates via its CRD with rFz2, a putative receptor for Wnt5a. Interestingly, Wnt5a and Ror2 activate the non-canonical Wnt pathway, as assessed by activation of JNK in cultured cells and inhibition of convergent extension movements in Xenopus. Conclusions: Our findings indicate that Wnt5a and Ror2 interact physically and functionally. Ror2 may thus act as a receptor for Wnt5a to activate non-canonical Wnt signalling.

750 citations


Journal Article
TL;DR: In GBM patients, EGFR is of significant prognostic value for predicting survival, and the overexpression of EGFRvIII with amplification plays an important role in enhanced tumorigenicity.
Abstract: Glioblastoma multiforme (GBM) frequently involves amplification and alteration of the epidermal growth factor receptor (EGFR) gene, resulting in overexpression of varied mutations, including the most common mutation, EGFRvIII, as well as wild-type EGFR (EGFRwt). To test the prognostic value of EGFR, we retrospectively analyzed the relationship between treatment outcomes and the EGFR gene in 87 newly diagnosed adult patients with supratentorial GBM enrolled in clinical trials. The EGFR gene status was assessed by Southern blots and EGFR expression by immunohistochemistry using three monoclonal antibodies (EGFR.25 for EGFR, EGFR.113 for EGFRwt, and DH8.3 for EGFRvIII). EGFR amplification was detected in 40 (46%) of the 87 GBM patients; in 39 (97.5%) of these, EGFR was overexpressed. On the other hand, in 46 of 47 patients without EGFR amplification (97.9%), no EGFR overexpression was present. There was a close correlation between EGFR amplification and EGFR overexpression (P < 0.0001). EGFRwt was overexpressed in 27 of the 40 (67.5%) patients with, and in none without, EGFR amplification (P < 0.0001). Similarly, EGFRvIII was overexpressed in 18 (45.0%) of 40 patients with and in 4 (8.5%) of 47 patients without EGFR amplification (P < 0.0001). The finding that 8 (20%) of the patients with EGFR amplification/EGFR overexpression manifested overexpression of neither EGFRwt nor EGFRvIII indicates that they overexpressed other types of EGFR. Multivariate analysis demonstrated that EGFR amplification was an independent, significant, unfavorable predictor for overall survival (OS) in all patients (P = 0.038, HR = 1.67). With respect to the relationship of age to EGFR prognostication, the EGFR gene status was a more significant prognosticator in younger patients, particularly in those <60 years (P = 0.0003, HR = 3.15), whereas not so in older patients. EGFRvIII overexpression, on the other hand, was not predictive for OS. However, in patients with EGFR amplification, multivariate analysis revealed that EGFRvIII overexpression was an independent, significant, poor prognostic factor for OS (P = 0.0044, HR = 2.71). This finding indicates that EGFRvIII overexpression in the presence of EGFR amplification is the strongest indicator of a poor survival prognosis. In GBM patients, EGFR is of significant prognostic value for predicting survival, and the overexpression of EGFRvIII with amplification plays an important role in enhanced tumorigenicity.

652 citations


Journal ArticleDOI
05 Sep 2003-Cell
TL;DR: It is found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis.

633 citations


Journal ArticleDOI
TL;DR: The uneven distribution of BRAF mutations strongly suggests distinct genetic pathways leading to melanoma, and the high mutation frequency in melanomas arising on intermittently sun-exposed skin suggests a complex causative role of such exposure that mandates further evaluation.
Abstract: The RAS/mitogen-activated protein kinase pathway sends external growth-promoting signals to the nucleus. BRAF, a critical serine/threonine kinase in this pathway, is frequently activated by somatic mutation in melanoma. Using a cohort of 115 patients with primary invasive melanomas, we show that BRAF mutations are statistically significantly more common in melanomas occurring on skin subject to intermittent sun exposure than elsewhere (23 of 43 patients; P<.001, two-sided Fisher's exact test). By contrast, BRAF mutations in melanomas on chronically sun-damaged skin (1 of 12 patients) and melanomas on skin relatively or completely unexposed to sun, such as palms, soles, subungual sites (6 of 39 patients), and mucosal membranes (2 of 21 patients) are rare. We found no association of mutation status with clinical outcome or with the presence of an associated melanocytic nevus. The mutated BRAF allele was frequently found at an elevated copy number, implicating BRAF as one of the factors driving selection for the frequent copy number increases of chromosome 7q in melanoma. In summary, the uneven distribution of BRAF mutations strongly suggests distinct genetic pathways leading to melanoma. The high mutation frequency in melanomas arising on intermittently sun-exposed skin suggests a complex causative role of such exposure that mandates further evaluation.

630 citations


Journal ArticleDOI
TL;DR: The phenomenon of "enhanced permeability and retention effect" observed in cancer tissue for macromolecules and lipids is coined "EPR effect", which is now widely accepted as a gold standard for anticancer drug designing to seek more cancer-selective targeting usingmacromolecular drugs.

532 citations


Journal ArticleDOI
TL;DR: It is concluded that nonsensory cells in the mature cochlea retain the competence to generate new hair cells after overexpression of Math1 in vivo and that Math1 is necessary and sufficient to direct hair cell differentiation in these mature nonsensary cells.
Abstract: Hair cell loss in the mammalian cochlea is irreversible and results in permanent hearing loss. Math1, the basic helix-loop-helix transcription factor homolog of the Drosophila atonal gene, is a positive regulator of hair cell differentiation during cochlear development. Developing hair cells express Math1, and nonsensory cells do not. We set out to determine the outcome of overexpression of Math1 in nonsensory cells of the cochlea on the phenotype of these cells. We demonstrate that in vivo inoculation of adenovirus with the Math1 gene insert into the endolymph of the mature guinea pig cochlea results in Math1 overexpression in nonsensory cochlear cells, as evident from the presence of Math1 protein in supporting cells of the organ of Corti and in adjacent nonsensory epithelial cells. Math1 overexpression leads to the appearance of immature hair cells in the organ of Corti and new hair cells adjacent to the organ of Corti in the interdental cell, inner sulcus, and Hensen cell regions. Axons are extended from the bundle of auditory nerve toward some of the new hair cells, suggesting that the new cells attract auditory neurons. We conclude that nonsensory cells in the mature cochlea retain the competence to generate new hair cells after overexpression of Math1 in vivo and that Math1 is necessary and sufficient to direct hair cell differentiation in these mature nonsensory cells.

456 citations



Journal ArticleDOI
TL;DR: Considerable residue levels of p,p(')-DDT and alpha-HCH were found in mussels and the concentrations of DDTs and HCHs found in Mussels from Asian developing countries were higher than those in developed nations suggesting present usage of DDT and H CHs along the coastal waters of Asian developing nations.

385 citations


Journal ArticleDOI
TL;DR: Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC -94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.
Abstract: We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC(50)], approximately 0.003 micro M; IC(90), approximately 0.009 micro M) with minimal cytotoxicity (50% cytotoxic concentration for CD4(+) MT-2 cells, 74 micro M). UIC-94017 blocked the infectivity and replication of each of HIV-1(NL4-3) variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 micro M (IC(50)s, 0.003 to 0.029 micro M), although it was less active against HIV-1(NL4-3) variants selected for resistance to amprenavir (IC(50), 0.22 micro M). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.

358 citations


Journal ArticleDOI
TL;DR: It is suggested that Aurora-A is essential for many crucial events during mitosis and that the phosphorylation of a series of substrates by Aurora- A at different stages of mitosis may promote diverse critical events in mitosis to maintain chromosome integrity in human cells.

Journal ArticleDOI
01 Oct 2003-Diabetes
TL;DR: The results suggest that hyperglycemia increases mitochondrial ROS production, resulting in NF-kappaB activation, COx-2 mRNA induction, COX-2 protein production, and PGE2 synthesis, which might contribute to the pathogenesis of diabetic nephropathy.
Abstract: Hyperglycemia increases the production of reactive oxygen species (ROS) from the mitochondrial electron transport chain in bovine endothelial cells. Because several studies have postulated a role for prostaglandins (PGs) in the glomerular hyperfiltration seen in early diabetes, we evaluated the effect of mitochondrial ROS on expression of the inducible isoform of cyclooxygenase (COX-2) in cultured human mesangial cells (HMCs). We first confirmed that incubation of HMC with 30 mmol/l glucose significantly increased COX-2 mRNA but not COX-1 mRNA, compared with 5.6 mmol/l glucose. Similarly, incubation of HMCs with 30 mmol/l glucose significantly increased mitochondrial membrane potential, intracellular ROS production, COX-2 protein expression, and PGE2 synthesis, and these events were completely suppressed by thenoyltrifluoroacetone or carbonyl cyanide m-chlorophenylhydrazone, inhibitors of mitochondrial metabolism, or by overexpression of uncoupling protein-1 or manganese superoxide dismutase. Furthermore, increased expression of COX-2 mRNA and protein was confirmed in glomeruli of streptozotocin-induced diabetic mice. In addition, hyperglycemia induced activation of the COX-2 gene promoter, which was completely abrogated by mutation of two nuclear factor kappaB (NF-kappaB) binding sites in the promoter region. Our results suggest that hyperglycemia increases mitochondrial ROS production, resulting in NF-kappaB activation, COX-2 mRNA induction, COX-2 protein production, and PGE2 synthesis. This chain of events might contribute to the pathogenesis of diabetic nephropathy.

Journal ArticleDOI
TL;DR: The Bcl11b−/− thymocytes showed unsuccessful recombination of Vβ to Dβ and lacked the pre–T cell receptor (TCR) complex on the cell surface, owing to the absence of Tcrb mRNA expression, which suggests that B cl11b is a key regulator of both differentiation and survival during thymocyte development.
Abstract: The gene Bcl11b, which encodes zinc finger proteins, and its paralog, Bcl11a, are associated with immune-system malignancies. We have generated Bcl11b-deficient mice that show a block at the CD4-CD8- double-negative stage of thymocyte development without any impairment in cells of B- or gammadelta T cell lineages. The Bcl11b-/- thymocytes showed unsuccessful recombination of V(beta) to D(beta) and lacked the pre-T cell receptor (TCR) complex on the cell surface, owing to the absence of Tcrb mRNA expression. In addition, we saw profound apoptosis in the thymus of neonatal Bcl11b-/- mice. These results suggest that Bcl11b is a key regulator of both differentiation and survival during thymocyte development.

Journal ArticleDOI
TL;DR: Data indicate that MBD1 may tether the Suv39h1-HP1 complex to methylated DNA regions, suggesting the presence of a pathway from DNA methylation to the modifications of histones for epigenetic gene regulation.

Journal ArticleDOI
TL;DR: It is demonstrated that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells, and proposed that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.

Journal ArticleDOI
TL;DR: Based on the important activities of gingipains in the bacterial infection and the pathogenesis of periodontitis, the bacterial proteinases can be targets for periodontal disease therapy.
Abstract: Gingipains are trypsin-like cysteine proteinases produced by Porphyromonas gingivalis, a major causative bacterium of adult periodontitis. HRgpA (95 kDa) and RgpB (50 kDa), products of 2 distinct but related genes, rgpA and rgpB, respectively, are specific for Arg-Xaa peptide bonds. Kgp, a product of the kgp gene, is specific for Lys-Xaa bonds. HRgpA and Kgp are non-covalent complexes containing separate catalytic and adhesion/ hemagglutinin domains, while RgpB has only a catalytic domain with a primary structure essentially identical to that of the catalytic subunit of HRgp. HRgpA and RgpB induce vascular permeability enhancement through activation of the kallikrein/kinin pathway and activate the blood coagulation system, which, respectively, are potentially associated with gingival crevicular fluid production and progression of inflammation leading to alveolar bone loss in the periodontitis site. Kgp is the most potent fibrinogen/fibrin degrading enzyme of the 3 gingipains in human plasma and is involved in the bleeding tendency at the diseased gingiva. HRgpA activates coagulation factors and degrades fibrinogen/fibrin more efficiently than RgpB due to the adhesion/hemagglutinin domains, which have affinity for phospholipids and fibrinogen. Gingipains degrade macrophage CD14, thus inhibiting activation of the leukocytes through the lipopolysaccharide (LPS) receptor, and thereby facilitating sustained colonization of P. gingivalis. Gingipains play a role in bacterial housekeeping and infection, including amino acid uptake from host proteins and fimbriae maturation. Based on the important activities of gingipains in the bacterial infection and the pathogenesis of periodontitis, the bacterial proteinases can be targets for periodontal disease therapy. Immunization with RgpB, HRgpA, or a portion of HRgpA catalytic domain attenuated P. gingivalis induced disorders in mice. In addition, a trypsin-like proteinase inhibitor retarded P. gingivalis growth specifically. Gingipains are potent virulence factors of P. gingivalis, and are likely to be associated with the development of periodontitis. It is, therefore, suggested that gingipain inhibition by vaccination and gingipain-specific inhibitors is a useful therapy for adult periodontitis caused by P. gingivalis infection.

Journal ArticleDOI
TL;DR: A basal release of acetylcholine from non-neuronal (urothelial) as well as neuronal sources has been demonstrated in isolated human detrusor muscle, and it is suggested that this release, which is increased by stretching the muscle and in the aging bladder, contributes todetrusor overactivity and OAB by eventually increasing bladder afferent activity during storage.

Journal ArticleDOI
TL;DR: It is demonstrated that MDSC clones retain their myogenic potential after haematopoietic differentiation and differentiate into myogenic cells both in vitro and in vivo in normal mdx mice.
Abstract: Muscle-derived stem cells (MDSCs) can differentiate into multiple lineages, including haematopoietic lineages. However, it is unknown whether MDSCs preserve their myogenic potential after differentiation into other lineages. To address this issue, we isolated from dystrophic muscle a population of MDSCs that express stem-cell markers and can differentiate into various lineages. After systemic delivery of three MDSC clones into lethally irradiated mice, we found that differentiation of the donor cells into various lineages of the haematopoietic system resulted in repopulation of the recipients' bone marrow. Donor-derived bone-marrow cells, isolated from these recipients by fluorescence-activated cell sorting (FACS), also repopulated the bone marrow of secondary, lethally irradiated, recipients and differentiated into myogenic cells both in vitro and in vivo in normal mdx mice. These findings demonstrate that MDSC clones retain their myogenic potential after haematopoietic differentiation.

Journal ArticleDOI
TL;DR: The prolonged circulating time of these macromolecules enables them to utilise the vascular abnormalities of solid tumour tissues, a phenomenon called the enhanced permeability and retention (EPR) effect, which justifies the development and use of this class of drugs in infectious and inflammatory conditions.
Abstract: Macromolecular drugs (also referred to as polymeric drugs) are a diverse group of drugs including polymer-conjugated drugs, polymeric micelles, liposomal drugs and solid phase depot formulations of various agents. In this review we will consider only water-soluble macromolecular drugs. In common, such drugs have high molecular weights, more than 40 kDa, which enables them to overcome renal excretion. Consequently, this group of drugs can attain prolonged plasma or local half-lives. The prolonged circulating time of these macromolecules enables them to utilise the vascular abnormalities of solid tumour tissues, a phenomenon called the enhanced permeability and retention (EPR) effect. The EPR effect facilitates extravasation of polymeric drugs more selectively at tumour tissues, and this selective targeting to solid tumour tissues may lead to superior therapeutic benefits with fewer systemic adverse effects. This contrasts with conventional low-molecular-weight drugs, where intratumour concentration diminishes rapidly in parallel with plasma concentration. The EPR effect is also operative in inflammatory tissues, which justifies the development and use of this class of drugs in infectious and inflammatory conditions. At the present time, several polymeric drugs have been approved by regulatory agencies. These include zinostatin stimalamer (copolymer styrene maleic acid-conjugated neocarzinostatin, or SMANCS) and polyethyleneglycol-conjugated interferon-alpha-2a. This article discusses these and other polymeric drugs in the setting of targeting to solid tumours.

Journal ArticleDOI
30 Jan 2003-Nature
TL;DR: Phylogenetic analysis indicates that Haikouichthys somewhat resembles the ammocoete larva of modern lampreys, this is because of shared general craniate characters; adult lampreys and hagfishes (the cyclostomes if monophyletic) are probably derived in many respects.
Abstract: Agnathan fish hold a key position in vertebrate evolution, especially regarding the origin of the head and neural-crest-derived tissue. In contrast to amphioxus, lampreys and other vertebrates possess a complex brain and placodes that contribute to well-developed eyes, as well as auditory and olfactory systems. These sensory sytems were arguably a trigger to subsequent vertebrate diversifications. However, although they are known from skeletal impressions in younger Palaeozoic agnathans, information about the earliest records of these systems has been largely wanting. Here we report numerous specimens of the Lower Cambrian vertebrate Haikouichthys ercaicunensis, until now only known from the holotype. Haikouichthys shows significant differences from other fossil agnathans: key features include a small lobate extension to the head, with eyes and possible nasal sacs, as well as what may be otic capsules. A notochord with separate vertebral elements is also identifiable. Phylogenetic analysis indicates that this fish lies within the stem-group craniates. Although Haikouichthys somewhat resembles the ammocoete larva of modern lampreys, this is because of shared general craniate characters; adult lampreys and hagfishes (the cyclostomes if monophyletic) are probably derived in many respects.

Journal ArticleDOI
TL;DR: It is demonstrated that IGF-1 and TGF-beta1 can act in combination to regulate proliferation and differentiation of periosteal mesenchymal cells during chondrogenesis.

Journal ArticleDOI
TL;DR: The observations suggest that phosphorylation of CENP-A on Ser-7 by Aurora-A in prophase is essential for kinetochore function.

Journal ArticleDOI
TL;DR: From these results, it should be clearly concluded that the iridium(III) tris(boryl) complex is an active species and an unusualiridium(V) species is involved as a key intermediate in the reaction.
Abstract: Iridium-catalyzed borylation of benzene with diboron was theoretically investigated with the DFT method, where an iridium(I) boryl complex, Ir(Beg)(NN) 1, and an iridium(III) tris(boryl) complex, Ir(Beg)3(NN) 14, (eg (ethyleneglycolato) = OCH2CH2O, NN = HNCHCHNH (diim) or 2,2‘-bipyridine (bpy)) were adopted as models of active species and B2(eg)2 was adopted as a model of bis(pinacolato)diboron (pinacolato = OCMe2CMe2O). Oxidative addition of a benzene CH σ-bond to 1 takes place with an activation barrier (Ea) of 11.2 kcal/mol, followed by reductive elimination of phenylborane, Ph−Beg, from Ir(Beg)(H)(Ph)(diim) with an activation barrier of 15.6 kcal/mol. Though the oxidative addition and the reductive elimination occur with moderate activation barriers, B2(eg)2 much more easily reacts with 1 to afford 14 than does benzene, of which the activation barrier is very small (2.9 kcal/mol). Oxidative addition of the benzene CH σ-bond to 14 occurs with a moderate activation barrier of 24.2 kcal/mol to afford an ...

Journal ArticleDOI
TL;DR: It is shown that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by Kif21A, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.
Abstract: Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.

Journal Article
TL;DR: It is demonstrated here that poly(ethylene glycol)-conjugated ZnPP (PEG-ZnPP), a water-soluble derivative of Zn PP, exhibited potent HO inhibitory activity and had an antitumor effect in vivo, suggesting that tumor-targeted inhibition of HO activity could be achieved by using PEG-znPP, which induces apoptosis in solid tumors, probably through increased oxidative stress.
Abstract: High expression of the inducible isoform of heme oxygenase (HO-1) is now well known in solid tumors in humans and experimental animal models. We reported previously that HO-1 may be involved in tumor growth (Tanaka et al., Br. J. Cancer, 88: 902-909, 2003), in that inhibition of HO activity in tumors by using zinc protoporphyrin (ZnPP) significantly reduced tumor growth in a rat model. We demonstrate here that poly(ethylene glycol)-conjugated ZnPP (PEG-ZnPP), a water-soluble derivative of ZnPP, exhibited potent HO inhibitory activity and had an antitumor effect in vivo. In vitro studies with cultured SW480 cells, which express HO-1, showed that PEG-ZnPP induced oxidative stress, and consequently apoptotic death, of these cells. Pharmacokinetic analysis revealed that PEG-ZnPP-administered i.v. had a circulation time in blood that was 40 times longer than that for nonpegylated ZnPP. More important, PEG-ZnPP preferentially accumulated in solid tumor tissue in a murine model. In vivo treatment with PEG-ZnPP (equivalent to 1.5 or 5 mg of ZnPP/kg, i.v., injected daily for 6 days) remarkably suppressed the growth of Sarcoma 180 tumors implanted in the dorsal skin of ddY mice without any apparent side effects. In addition, this PEG-ZnPP treatment produced tumor-selective suppression of HO activity as well as induction of apoptosis. The major reason for tumor-selective targeting of PEG-ZnPP is attributed to the enhanced permeability and retention effect that is observed commonly in solid tumors for biocompatible macromolecular drugs. These findings suggest that tumor-targeted inhibition of HO activity could be achieved by using PEG-ZnPP, which induces apoptosis in solid tumors, probably through increased oxidative stress.

Journal ArticleDOI
TL;DR: Developments in characterizing four key sets of interactions controlling antigen responsiveness in T cells are reviewed and the major challenges remaining as the field moves toward formulating quantitative models of T cell recognition are highlighted.
Abstract: Considerable progress has been made in characterizing four key sets of interactions controlling antigen responsiveness in T cells, involving the following: the T cell antigen receptor, its coreceptors CD4 and CD8, the costimulatory receptors CD28 and CTLA-4, and the accessory molecule CD2. Complementary work has defined the general biophysical properties of interactions between cell surface molecules. Among the major conclusions are that these interactions are structurally heterogeneous, often reflecting clear-cut functional constraints, and that, although they all interact relatively weakly, hierarchical differences in the stabilities of the signaling complexes formed by these molecules may influence the sequence of steps leading to T cell activation. Here we review these developments and highlight the major challenges remaining as the field moves toward formulating quantitative models of T cell recognition.

Journal ArticleDOI
01 Jun 2003-Heart
TL;DR: The serial change in plasma adiponectin concentrations and its relation to plasma CRP concentration in the acute phase are examined and suggested to reflect pre-existing coronary plaque instability associated with the onset of AMI.
Abstract: Adiponectin is a new member of adipocyte derived proteins belonging to the soluble defence collagens.1 Plasma adiponectin concentrations in obese subjects are decreased in spite of an adipose specific expression.1 More interestingly, the patients with chronic coronary artery disease exhibited lower plasma adiponectin concentrations compared to body mass index (BMI) matched control subjects.2 On the other hand, adiponectin accumulates in the vascular subendothelial space when the endothelial barrier is damaged.3 In vitro, adiponectin suppresses the expression of adhesion molecules in the vascular endothelial cells and cytokine production from macrophages.2,4 Therefore, the molecule may be involved in the inflammation and tissue repairing processes. Acute coronary syndrome is often precipitated by acute thrombosis.5 It is commonly accepted that the rupture or the erosion of plaques by the inflammatory process leads to coronary thrombosis and acute myocardial infarction (AMI). The C reactive protein (CRP) concentrations in the acute phase are suggested to reflect pre-existing coronary plaque instability associated with the onset of AMI. The significance of adiponectin in acute coronary syndrome has never been investigated. In the present study, we examined the serial change in plasma adiponectin concentrations and its relation to plasma CRP concentration in …

Journal ArticleDOI
TL;DR: Interestingly, REV3−/− cells showed reduced gene targeting efficiencies and significant increase in the level of chromosomal breaks in the subsequent M phase after IR in the G2 phase, suggesting the involvement of Rev3 in HR‐mediated double‐strand break repair.
Abstract: Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major postreplicational repair (PRR) pathways. The REV3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase zeta, which is involved in mutagenic TLS. To investigate the role of REV3 in vertebrates, we disruped the gene in chicken DT40 cells. REV3(-/-) cells are sensitive to various DNA-damaging agents, including UV, methyl methanesulphonate (MMS), cisplatin and ionizing radiation (IR), consistent with its role in TLS. Interestingly, REV3(-/-) cells showed reduced gene targeting efficiencies and significant increase in the level of chromosomal breaks in the subsequent M phase after IR in the G(2) phase, suggesting the involvement of Rev3 in HR-mediated double-strand break repair. REV3(-/-) cells showed significant increase in sister chromatid exchange events and chromosomal breaks even in the absence of exogenous genotoxic stress. Furthermore, double mutants of REV3 and RAD54, genes involved in HR, are synthetic lethal. In conclusion, Rev3 plays critical roles in PRR, which accounts for survival on naturally occurring endogenous as well as induced damages during replication.

Journal ArticleDOI
TL;DR: A comprehensive understanding of the impact of the ER stress pathway in beta-cells and how it relates to the development of diabetes may contribute to provide new targets for the prevention and treatment of this disease.
Abstract: Pancreatic β-cells are strongly engaged in protein secretion and have highly developed endoplasmic reticulum (ER). Proper folding of polypeptide into a three-dimensional structure is essential for cellular function and protein malfolding can threaten cell survival. Various conditions can perturb the protein folding in the ER, which is collectively called ER stress. In order to adapt ER stress conditions, the cells respond in three distinct ways such as transcriptional induction of ER chaperones, translational attenuation, and ER-associated degradation (ERAD). However, when ER functions are severely impaired, the cell is eliminated by apoptosis via transcriptional induction of CHOP/GADD153, the activation of CJUN NH2-terminal kinase, and/or the activation of caspase-12. Recent studies have revealed that β-cell is one of the most susceptible cells for ER stress, and ER stress-mediated apoptosis in β-cells can be a cause of diabetes. A comprehensive understanding of the impact of the ER stress pathway in β-cells and how it relates to the development of diabetes may contribute to provide new targets for the prevention and treatment of this disease.(Internal Medicine 42: 7-14, 2003)

Journal ArticleDOI
TL;DR: It is indicated that the topologically constrained interactions of anti-CD28 superagonists bypass the requirement for signal 1 in T cell activation and may prove useful for the development of T cell stimulatory drugs.
Abstract: Full activation of naive T cells requires both engagement of the T cell antigen receptor (TCR; signal 1) and costimulatory signaling by CD28 (signal 2). We previously identified two types of rat CD28-specific monoclonal antibodies (mAbs): “conventional,” TCR signaling–dependent costimulatory mAbs and “superagonistic” mAbs capable of inducing the full activation of primary resting T cells in the absence of TCR ligation both in vitro and in vivo. Using chimeric rat/mouse CD28 molecules, we show that the superagonists bind exclusively to the laterally exposed C′′D loop of the immunoglobulin-like domain of CD28 whereas conventional, costimulatory mAbs recognize an epitope close to the binding site for the natural CD80/CD86 ligands. Unexpectedly, the C′′D loop reactivity of a panel of new antibodies raised against human CD28 could be predicted solely on the basis of their superagonistic properties. Moreover, mouse CD28 molecules engineered to express the rat or human C′′D loop sequences activated T cell hybridomas without TCR ligation when cross-linked by superagonistic mAbs. Finally, biochemical analysis revealed that superagonistic CD28 signaling activates the nuclear factor κB pathway without inducing phosphorylation of either TCRζ or ZAP70. Our findings indicate that the topologically constrained interactions of anti-CD28 superagonists bypass the requirement for signal 1 in T cell activation. Antibodies with this property may prove useful for the development of T cell stimulatory drugs.