scispace - formally typeset
Search or ask a question
Institution

Kumamoto University

EducationKumamoto, Kumamoto, Japan
About: Kumamoto University is a education organization based out in Kumamoto, Kumamoto, Japan. It is known for research contribution in the topics: Population & Cancer. The organization has 19602 authors who have published 35513 publications receiving 901260 citations. The organization is also known as: Kumamoto Daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: The roles and regulation of Sox2 in the blastocyst are unique compared to other pluripotency factors such as Oct4 or Nanog, and ICM and TE genes are spatially patterned in parallel prior to Blastocyst formation.
Abstract: Pluripotent epiblast (EPI) cells, present in the inner cell mass (ICM) of the mouse blastocyst, are progenitors of both embryonic stem (ES) cells and the fetus. Discovering how pluripotency genes regulate cell fate decisions in the blastocyst provides a valuable way to understand how pluripotency is normally established. EPI cells are specified by two consecutive cell fate decisions. The first decision segregates ICM from trophectoderm (TE), an extraembryonic cell type. The second decision subdivides ICM into EPI and primitive endoderm (PE), another extraembryonic cell type. Here, we investigate the roles and regulation of the pluripotency gene Sox2 during blastocyst formation. First, we investigate the regulation of Sox2 patterning and show that SOX2 is restricted to ICM progenitors prior to blastocyst formation by members of the HIPPO pathway, independent of CDX2, the TE transcription factor that restricts Oct4 and Nanog to the ICM. Second, we investigate the requirement for Sox2 in cell fate specification during blastocyst formation. We show that neither maternal (M) nor zygotic (Z) Sox2 is required for blastocyst formation, nor for initial expression of the pluripotency genes Oct4 or Nanog in the ICM. Rather, Z Sox2 initially promotes development of the primitive endoderm (PE) non cell-autonomously via FGF4, and then later maintains expression of pluripotency genes in the ICM. The significance of these observations is that 1) ICM and TE genes are spatially patterned in parallel prior to blastocyst formation and 2) both the roles and regulation of Sox2 in the blastocyst are unique compared to other pluripotency factors such as Oct4 or Nanog.

185 citations

Journal ArticleDOI
Sota Hiraga1
TL;DR: Partition Genes of the lncFfl Plasmids Rl and NRI and the cis-Acting Region of F and PI Plasm ids Essential for Partition are analyzed.
Abstract: INTRODUCTION 283 ANALYSIS OF GENES INVOLVED IN CHROMOSOME PARTITION 286 Two Categories of Mechanisms.. . . . . . . . .. . . . . . ....... . . . . ... . . . . . . . . . . . . . ..... . . . . . . 286 Bacterial par Mutants Defective in Topoisomerases .... 286 muk Mutants; Mutants that Produce Chromosome-less Cells......... ........ 288 THE mukB GENE AND ITS PRODUCT 290 Properties of the mukB Mutants..... ..... ........ 290 Predicted Secondary Structure of MukB Protein....... .. . . . . . . . ........ . . . . 291 Properties of MukB Protein in vitro. ...... . . .... . . . . . .... . . . .. . . .. . . . . . . . . . . . . . . . . 293 Filamentous Protein Polymers in E. coli 294 PARTITION MECHANISM OF PLASMlDS 295 Plasmid-Encoded Proteins and the cis-Acting Region of F and PI Plasm ids Essential for Partition 295 Partition Genes of the lncFfl Plasmids Rl and NRI . .... . . . . . . . . . .. 301 The cis-Acting par Site of pSCIOI Plasmid 302 Partition of a Mini-F Plasmid in a mukB-Disrupted Null Mutant 302 CONCLUDING REMARKS ....... ........ . 303

184 citations

Journal ArticleDOI
TL;DR: In this article, gold, silver and gold-silver alloy nanoparticles capped with decanethiolate monolayer shells (DT-Au, DT-Ag and DT -Au/Ag) were synthesized, with core sizes 2.3 (± 1.0), 3.3(±1.0) and 2.0(± 1)nm, respectively.

184 citations

Journal ArticleDOI
TL;DR: IL-17A signaling, not IL-17F, has an antifibrogenic effect via the upregulation of miR-129-5p and the downregulation of connective tissue growth factor and α1(I) collagen, which may lead to a new therapeutic approach for this disease.
Abstract: Among IL-17 families, IL-17A and IL-17F share amino acid sequence similarity and bind to IL-17R type A. IL-17 signaling is implicated in the pathogenesis of various autoimmune diseases, but its role in the regulatory mechanism of extracellular matrix expression and its contribution to the phenotype of systemic sclerosis (SSc) both remain to be elucidated. This study revealed that IL-17A expression was significantly increased in the involved skin and sera of SSc patients, whereas the IL-17F levels did not increase. In contrast, the expression of IL-17R type A in SSc fibroblasts significantly decreased in comparison with that in normal fibroblasts, due to the intrinsic TGF-β1 activation in these cell types. Moreover, IL-17A, not IL-17F, reduced the protein expression of α1(I) collagen and connective tissue growth factor. miR-129-5p, one of the downregulated microRNAs in SSc fibroblasts, increased due to IL-17A and mediated the α1(I) collagen reduction. These results suggest that IL-17A signaling, not IL-17F, has an antifibrogenic effect via the upregulation of miR-129-5p and the downregulation of connective tissue growth factor and α1(I) collagen. IL-17A signaling is suppressed due to the downregulation of the receptor by the intrinsic activation of TGF-β1 in SSc fibroblasts, which may amplify the increased collagen accumulation and fibrosis characteristic of SSc. Increased IL-17A levels in the sera and involved skin of SSc may be due to negative feedback. Clarifying the novel regulatory mechanisms of fibrosis by the cytokine network consisting of TGF-β and IL-17A may lead to a new therapeutic approach for this disease.

184 citations

Journal ArticleDOI
01 Oct 2000-Diabetes
TL;DR: GA serves as an important intermediate for the generation of AGE structure(s) responsible for recognition by MSR-A, which is effectively inhibited by glucose-derived AGE-BSA, acetylated LDL, and oxidized LDL.
Abstract: Long-term incubation of proteins with glucose leads to the formation of advanced glycation end products (AGEs) that are recognized by AGE receptors. Glyoxal, glycolaldehyde (GA), and methylglyoxal are potential intermediates for the formation of AGE structures such as Nomega-(carboxymethyl)lysine (CML). We evaluated the contribution of these aldehydes to the formation of AGE structure(s), particularly the structure important for the receptor-mediated endocytic uptake of AGE proteins by macrophages. GA-modified bovine serum albumin (BSA), methylglyoxal-modified BSA (MG-BSA), and glyoxal-modified BSA (GO-BSA) were prepared, and their physicochemical, immunological, and biologic properties were compared with those of glucose-derived AGE-BSA. CML contents were high in GO-BSA and low in GA-modified BSA (GA-BSA) but did not exist in MG-BSA. The fluorescence patterns of GA-BSA and MG-BSA were similar to those of glucose-derived AGE-BSA but were weak in GO-BSA. Immunochemically, the antibody against non-CML structures of glucose-derived AGE-BSA reacted strongly with GA-BSA and weakly with GO-BSA but did not react with MG-BSA. The negative charge of these ligands increased to a similar extent. However, GA-BSA, but not MG-BSA or GO-BSA, underwent receptor-mediated endocytosis by the macrophage-derived cell line RAW 264.7, which was effectively inhibited by glucose-derived AGE-BSA, acetylated LDL, and oxidized LDL, which are well-known ligands for the macrophage type I and type II class A scavenger receptors (MSR-A). The endocytic uptake of GA-BSA by mouse peritoneal macrophages was also significant, but that by peritoneal macrophages from MSR-A-deficient mice was markedly reduced. Our results suggest that GA serves as an important intermediate for the generation of AGE structure(s) responsible for recognition by MSR-A.

184 citations


Authors

Showing all 19645 results

NameH-indexPapersCitations
Fred H. Gage216967185732
George D. Yancopoulos15849693955
Kenji Kangawa1531117110059
Tasuku Honjo14171288428
Hideo Yagita13794670623
Masashi Yanagisawa13052483631
Kazuwa Nakao128104170812
Kouji Matsushima12459056995
Thomas E. Mallouk12254952593
Toshio Hirano12040155721
Eisuke Nishida11234945918
Hiroaki Shimokawa11194948822
Bernd Bukau11127138446
Kazuo Tsubota105137948991
Toshio Suda10458041069
Network Information
Related Institutions (5)
Hiroshima University
69.2K papers, 1.4M citations

96% related

Hokkaido University
115.4K papers, 2.6M citations

95% related

Osaka University
185.6K papers, 5.1M citations

95% related

Kyushu University
135.1K papers, 3M citations

95% related

Nagoya University
128.2K papers, 3.2M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202297
20211,701
20201,654
20191,511
20181,330