scispace - formally typeset
Search or ask a question
Institution

Kunming Institute of Botany

FacilityKunming, China
About: Kunming Institute of Botany is a facility organization based out in Kunming, China. It is known for research contribution in the topics: Biology & Dothideomycetes. The organization has 1062 authors who have published 1096 publications receiving 28715 citations. The organization is also known as: Kūnmíng Zhíwù Yánjiūsuǒ & Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China.


Papers
More filters
Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations

Journal ArticleDOI
TL;DR: Forest transitions have occurred in two, sometimes overlapping circumstances: economic development and scarcity of forest products have prompted governments and landowners to plant trees in some fields as mentioned in this paper, and these transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them.
Abstract: Places experience forest transitions when declines in forest cover cease and recoveries in forest cover begin. Forest transitions have occurred in two, sometimes overlapping circumstances. In some places economic development has created enough non-farm jobs to pull farmers off of the land, thereby inducing the spontaneous regeneration of forests in old fields. In other places a scarcity of forest products has prompted governments and landowners to plant trees in some fields. The transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them. C 2005 Elsevier Ltd. All rights reserved.

1,278 citations

Journal ArticleDOI
TL;DR: The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability, biodiversity, biodiversity and ecosystem boundary shifts, and global feedbacks.
Abstract: The Greater Himalayas hold the largest mass of ice outside polar regions and are the source of the 10 largest rivers in Asia. Rapid reduction in the volume of Himalayan glaciers due to climate change is occurring. The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability (amounts, seasonality), biodiversity (endemic species, predator-prey relations), ecosystem boundary shifts (tree-line movements, high-elevation ecosystem changes), and global feedbacks (monsoonal shifts, loss of soil carbon). Climate change will also have environmental and social impacts that will likely increase uncertainty in water supplies and agricultural production for human populations across Asia. A common understanding of climate change needs to be developed through regional and local-scale research so that mitigation and adaptation strategies can be identified and implemented. The challenges brought about by climate change in the Greater Himalayas can only be addressed through increased regional collaboration in scientific research and policy making.

774 citations

Journal ArticleDOI
TL;DR: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence, and it is hoped that by illustrating types they provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Abstract: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.

501 citations

Journal ArticleDOI
Guo Jie Li1, Kevin D. Hyde2, Kevin D. Hyde3, Kevin D. Hyde4  +161 moreInstitutions (45)
TL;DR: This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range.
Abstract: Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.

488 citations


Authors

Showing all 1103 results

NameH-indexPapersCitations
Kevin D. Hyde99138246113
Akira Isogai8263130477
Xiong Li7149321914
Takahiro Tanaka6847717281
Jianchu Xu5837018285
Hiroshi Sakagami5575021457
Jun Wen5334310103
Takashi Tanaka5242411501
Qian Wang502288598
Ryoji Kasai492137827
De-Zhu Li4636310456
Han-Dong Sun4659610509
Hugh W. Pritchard461946447
Lan Ma461546103
Yoshio Takeda433308721
Network Information
Related Institutions (5)
Royal Botanic Gardens
6.8K papers, 257.4K citations

85% related

Shenyang Pharmaceutical University
10.3K papers, 177.1K citations

83% related

China Pharmaceutical University
16.2K papers, 275.9K citations

80% related

University of Shizuoka
7.8K papers, 190.9K citations

79% related

Indian Institute of Chemical Technology
13.9K papers, 305.8K citations

79% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202263
202178
202067
201975
201857