scispace - formally typeset
Search or ask a question
Institution

Kurchatov Institute

FacilityMoscow, Russia
About: Kurchatov Institute is a facility organization based out in Moscow, Russia. It is known for research contribution in the topics: Plasma & Neutron. The organization has 12493 authors who have published 18321 publications receiving 281837 citations. The organization is also known as: Laboratory No. 2 of the USSR Academy of Sciences & Kurchatov Institute.
Topics: Plasma, Neutron, Magnetic field, Electron, Tokamak


Papers
More filters
Journal ArticleDOI
K. Adcox1, S. S. Adler2, Serguei Afanasiev3, Christine Angela Aidala2  +550 moreInstitutions (48)
TL;DR: In this paper, the results of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) were examined with an emphasis on implications for the formation of a new state of dense matter.

2,572 citations

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: For example, the authors mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body.
Abstract: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

1,715 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculate the shell-model correction to the liquid drop energy of the nucleus as a function of the occupation number and deformation, and show a strong correlation between the shell correction and nucleon level density at the Fermi energy.

1,533 citations

Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations

Journal ArticleDOI
Yoshio Abe1, C. Aberle2, T. Akiri, J. C. dos Anjos  +185 moreInstitutions (31)
TL;DR: The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations, and an observed-to-predicted ratio of events of 0.944±0.016 and a deficit can be interpreted as a nonzero value of the still unmeasured neutrinos mixing parameter sin(2)2θ(13).
Abstract: The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.016(stat)±0.040(syst) was obtained in 101 days of running at the Chooz nuclear power plant in France, with two 4.25GWth reactors. The results were obtained from a single 10m3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a nonzero value of the still unmeasured neutrino mixing parameter sin⁡22θ13. Analyzing both the rate of the prompt positrons and their energy spectrum, we find sin⁡22θ13=0.086±0.041(stat)±0.030(syst), or, at 90% C.L., 0.017

1,214 citations


Authors

Showing all 12758 results

NameH-indexPapersCitations
A. Artamonov1501858119791
Nikolay Tyurin1421270101170
Pavel Shatalov136109791536
Grigory Safronov133135894610
Alexander Zhokin132132386842
Vladimir Gavrilov131158797505
Dmitry Golubkov130159978751
Victor Kim129128787209
Alexander Nikitenko129115982102
Sergei Bitioukov128108183785
Igor Azhgirey128115983498
Oleg Solovyanov12886774637
Andrey Uzunian128120885703
Sergey Troshin128118284885
Oleg Zenin128838106989
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

89% related

Moscow State University
123.3K papers, 1.7M citations

88% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

87% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

87% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202374
2022281
20211,078
20201,464
20191,407
20181,286