scispace - formally typeset
Search or ask a question

Showing papers by "Kyoto University published in 2001"


Journal ArticleDOI
28 Dec 2001-Cell
TL;DR: The transcription factor XBP1, a target of ATF6, is identified as a mammalian substrate of such an unconventional mRNA splicing system and it is shown that only the spliced form of X BP1 can activate the UPR efficiently.

3,635 citations



Journal ArticleDOI
TL;DR: These studies show overlapping functions of PD-L1 andPD-L2 and indicate a key role for the PD- L–PD-1 pathway in regulating T cell responses.
Abstract: Programmed death I (PD-I)-deficient mice develop a variety of autoimmune-like diseases, which suggests that this immunoinhibitory receptor plays an important role in tolerance. We identify here PD-1 ligand 2 (PD-L2) as a second ligand for PD-1 and compare the function and expression of PD-L1 and PD-L2. Engagement of PD-1 by PD-L2 dramatically inhibits T cell receptor (TCR)-mediated proliferation and cytokine production by CD4+ T cells. At low antigen concentrations, PD-L2-PD-1 interactions inhibit strong B7-CD28 signals. In contrast, at high antigen concentrations, PD-L2-PD-1 interactions reduce cytokine production but do not inhibit T cell proliferation. PD-L-PD-1 interactions lead to cell cycle arrest in G0/G1 but do not increase cell death. In addition, ligation of PD-1 + TCR leads to rapid phosphorylation of SHP-2, as compared to TCR ligation alone. PD-L expression was up-regulated on antigen-presenting cells by interferon gamma treatment and was also present on some normal tissues and tumor cell lines. Taken together, these studies show overlapping functions of PD-L1 and PD-L2 and indicate a key role for the PD-L-PD-1 pathway in regulatingT cell responses.

2,711 citations


Journal ArticleDOI
TL;DR: New insights into the molecular architecture of tight junctions allow us to now discuss the structure and functions of this unique cell–cell adhesion apparatus in molecular terms.
Abstract: Tight junctions are one mode of cell-cell adhesion in epithelial and endothelial cellular sheets. They act as a primary barrier to the diffusion of solutes through the intercellular space, create a boundary between the apical and the basolateral plasma membrane domains, and recruit various cytoskeletal as well as signalling molecules at their cytoplasmic surface. New insights into the molecular architecture of tight junctions allow us to now discuss the structure and functions of this unique cell-cell adhesion apparatus in molecular terms.

2,366 citations


Journal ArticleDOI
TL;DR: A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.
Abstract: Fibroblast growth factors (FGFs) make up a large family of polypeptide growth factors that are found in organisms ranging from nematodes to humans. In vertebrates, the 22 members of the FGF family range in molecular mass from 17 to 34 kDa and share 13-71% amino acid identity. Between vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. FGFs have a high affinity for heparan sulfate proteoglycans and require heparan sulfate to activate one of four cell-surface FGF receptors. During embryonic development, FGFs have diverse roles in regulating cell proliferation, migration and differentiation. In the adult organism, FGFs are homeostatic factors and function in tissue repair and response to injury. When inappropriately expressed, some FGFs can contribute to the pathogenesis of cancer. A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.

2,228 citations



Journal ArticleDOI
TL;DR: An antigen delivery system targeting these specialized antigen presenting cells in vivo using a monoclonal antibody to a DC-restricted endocytic receptor is devised, which concludes that in the absence of additional stimuli DCs induce transient antigen-specific T cell activation followed by T cell deletion and unresponsiveness.
Abstract: Dendritic cells (DCs) have the capacity to initiate immune responses, but it has been postulated that they may also be involved in inducing peripheral tolerance. To examine the function of DCs in the steady state we devised an antigen delivery system targeting these specialized antigen presenting cells in vivo using a monoclonal antibody to a DC-restricted endocytic receptor, DEC-205. Our experiments show that this route of antigen delivery to DCs is several orders of magnitude more efficient than free peptide in complete Freund's adjuvant (CFA) in inducing T cell activation and cell division. However, T cells activated by antigen delivered to DCs are not polarized to produce T helper type 1 cytokine interferon γ and the activation response is not sustained. Within 7 d the number of antigen-specific T cells is severely reduced, and the residual T cells become unresponsive to systemic challenge with antigen in CFA. Coinjection of the DC-targeted antigen and anti-CD40 agonistic antibody changes the outcome from tolerance to prolonged T cell activation and immunity. We conclude that in the absence of additional stimuli DCs induce transient antigen-specific T cell activation followed by T cell deletion and unresponsiveness.

1,903 citations


Journal ArticleDOI
TL;DR: The observations indicate that increased oxidative damage is an early event in AD that decreases with disease progression and lesion formation and suggest that AD is associated with compensatory changes that reduce damage from reactive oxygen.
Abstract: Recently, we demonstrated a significant increase of an oxidized nucleoside derived from RNA, 8-hydroxyguanosine (8OHG), and an oxidized amino acid, nitrotyrosine in vulnerable neurons of patients with Alzheimer disease (AD). To determine whether oxidative damage is an early- or end-stage event in the process of neurodegeneration in AD, we investigated the relationship between neuronal 8OHG and nitrotyrosine and histological and clinical variables, i.e. amyloid-beta (A beta) plaques and neurofibrillary tangles (NFT), as well as duration of dementia and apolipoprotein E (ApoE) genotype. Our findings show that oxidative damage is quantitatively greatest early in the disease and reduces with disease progression. Surprisingly, we found that increases in A beta deposition are associated with decreased oxidative damage. These relationships are more significant in ApoE epsilon4 carriers. Moreover, neurons with NFT show a 40%-56% decrease in relative 8OHG levels compared with neurons free of NFT. Our observations indicate that increased oxidative damage is an early event in AD that decreases with disease progression and lesion formation. These findings suggest that AD is associated with compensatory changes that reduce damage from reactive oxygen.

1,799 citations


Journal ArticleDOI
12 Jan 2001-Science
TL;DR: Results indicate that PD-1 may be an important factor contributing to the prevention of autoimmune diseases and high-titer circulating IgG autoantibodies reactive to a 33-kilodalton protein expressed specifically on the surface of cardiomyocytes.
Abstract: Dilated cardiomyopathy is a severe pathology of the heart with poorly understood etiology. Disruption of the gene encoding the negative immunoregulatory receptor PD-1 in BALB/c mice, but not in BALB/c RAG-2-/- mice, caused dilated cardiomyopathy with severely impaired contraction and sudden death by congestive heart failure. Affected hearts showed diffuse deposition of immunoglobulin G (IgG) on the surface of cardiomyocytes. All of the affected PD-1-/- mice exhibited high-titer circulating IgG autoantibodies reactive to a 33-kilodalton protein expressed specifically on the surface of cardiomyocytes. These results indicate that PD-1 may be an important factor contributing to the prevention of autoimmune diseases.

1,680 citations


Journal ArticleDOI
TL;DR: Based on the fluorescence microscopic observations of mouse macrophage RAW264.7 cells, it is found that various arginine-rich peptides have a translocation activity very similar to Tat-(48–60), and the results strongly suggested the possible existence of a common internalization mechanism ubiquitous to arkinine- rich peptides.

1,665 citations


Journal ArticleDOI
TL;DR: There is accumulating evidence that T‐cell‐mediated dominant control of self‐reactive T‐cells contributes to the maintenance of immunologic self‐tolerance and its alteration can cause autoimmune disease.
Abstract: There is accumulating evidence that T-cell-mediated dominant control of self-reactive T-cells contributes to the maintenance of immunologic self-tolerance and its alteration can cause autoimmune disease. Efforts to delineate such a regulatory T-cell population have revealed that CD25+ cells in the CD4+ population in normal naive animals bear the ability to prevent autoimmune disease in vivo and, upon antigenic stimulation, suppress the activation/proliferation of other T cells in vitro. The CD25+ CD4+ regulatory T cells, which are naturally anergic and suppressive, appear to be produced by the normal thymus as a functionally distinct subpopulation of T cells. They play critical roles not only in preventing autoimmunity but also in controlling tumor immunity and transplantation tolerance.

Journal ArticleDOI
TL;DR: Experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force, and that external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts.
Abstract: The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.

Journal ArticleDOI
TL;DR: It is concluded that the stomach is a major source of circulating ghrelin and that plasma gh Relin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
Abstract: Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelinlike immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 58.4 vs. 192.8 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans. (J Clin Endocrinol Metab 86: 4753– 4758, 2001)

Journal ArticleDOI
TL;DR: Morphometric analysis showed that mitochondria are significantly reduced in Alzheimer's disease, and the relationship shown here between the site and extent of mitochondrial abnormalities and oxidative damage suggests an intimate and early association between these features in dementia.
Abstract: The finding that oxidative damage, including that to nucleic acids, in Alzheimer's disease is primarily limited to the cytoplasm of susceptible neuronal populations suggests that mitochondrial abnormalities might be part of the spectrum of chronic oxidative stress of Alzheimer's disease. In this study, we used in situ hybridization to mitochondrial DNA (mtDNA), immunocytochemistry of cytochrome oxidase, and morphometry of electron micrographs of biopsy specimens to determine whether there are mitochondrial abnormalities in Alzheimer's disease and their relationship to oxidative damage marked by 8-hydroxyguanosine and nitrotyrosine. We found that the same neurons showing increased oxidative damage in Alzheimer's disease have a striking and significant increase in mtDNA and cytochrome oxidase. Surprisingly, much of the mtDNA and cytochrome oxidase is found in the neuronal cytoplasm and in the case of mtDNA, the vacuoles associated with lipofuscin. Morphometric analysis showed that mitochondria are significantly reduced in Alzheimer's disease. The relationship shown here between the site and extent of mitochondrial abnormalities and oxidative damage suggests an intimate and early association between these features in Alzheimer's disease.

Journal ArticleDOI
TL;DR: In this paper, a giant magnetocaloric effect was found in MnAs, which undergoes a first-order ferromagnetic to paramagnetic transition at 318 K, and the magnetic entropy change caused by a magnetic field of 5 T is as large as 30 J/K kg at the maximum value, which exceeds that of conventional magnetic refrigerant materials by a factor of 2-4.
Abstract: A giant magnetocaloric effect was found in MnAs, which undergoes a first-order ferromagnetic to paramagnetic transition at 318 K. The magnetic entropy change caused by a magnetic field of 5 T is as large as 30 J/K kg at the maximum value, which exceeds that of conventional magnetic refrigerant materials by a factor of 2–4. The adiabatic temperature change reaches 13 K in a field change of 5 T. The substitution of 10% Sb for As reduces the thermal hysteresis and lowers the Curie temperature to 280 K, while the giant magnetocaloric properties are retained.

Journal ArticleDOI
TL;DR: It is demonstrated that lymphatics can be established in solid tumors and implicates VEGF family members in determining the route of metastatic spread and could be blocked with an antibody specific for V EGF-D.
Abstract: Metastasis to local lymph nodes via the lymphatic vessels is a common step in the spread of solid tumors. To investigate the molecular mechanisms underlying the spread of cancer by the lymphatics, we examined the ability of vascular endothelial growth factor (VEGF)-D, a ligand for the lymphatic growth factor receptor VEGFR-3/Flt-4, to induce formation of lymphatics in a mouse tumor model. Staining with markers specific for lymphatic endothelium demonstrated that VEGF-D induced the formation of lymphatics within tumors. Moreover, expression of VEGF-D in tumor cells led to spread of the tumor to lymph nodes, whereas expression of VEGF, an angiogenic growth factor which activates VEGFR-2 but not VEGFR-3, did not. VEGF-D also promoted tumor angiogenesis and growth. Lymphatic spread induced by VEGF-D could be blocked with an antibody specific for VEGF-D. This study demonstrates that lymphatics can be established in solid tumors and implicates VEGF family members in determining the route of metastatic spread.

Journal ArticleDOI
TL;DR: Seasonal contrasts between allochthonous prey supply and in situ prey biomass determine the importance of reciprocal subsidies in mutual trophic interactions between contiguous habitats.
Abstract: Mutual trophic interactions between contiguous habitats have remained poorly understood despite their potential significance for community maintenance in ecological landscapes. In a deciduous forest and stream ecotone, aquatic insect emergence peaked around spring, when terrestrial invertebrate biomass was low. In contrast, terrestrial invertebrate input to the stream occurred primarily during summer, when aquatic invertebrate biomass was nearly at its lowest. Such reciprocal, across-habitat prey flux alternately subsidized both forest birds and stream fishes, accounting for 25.6% and 44.0% of the annual total energy budget of the bird and fish assemblages, respectively. Seasonal contrasts between allochthonous prey supply and in situ prey biomass determine the importance of reciprocal subsidies.

Journal ArticleDOI
25 Jan 2001-Nature
TL;DR: The findings indicate that the formation of ternary and quaternary complexes of ABC proteins may be the molecular basis of the ABC model, and that the flower-specific expression of SEP3 restricts the action of theABC genes to the flower.
Abstract: Genetic studies, using floral homeotic mutants, have led to the ABC model of flower development. This model proposes that the combinatorial action of three sets of genes, the A, B and C function genes, specify the four floral organs (sepals, petals, stamens and carpels) in the concentric floral whorls. However, attempts to convert vegetative organs into floral organs by altering the expression of ABC genes have been unsuccessful. Here we show that the class B proteins of Arabidopsis, PISTILLATA (PI) and APETALA3 (AP3), interact with APETALA1 (AP1, a class A protein) and SEPALLATA3 (SEP3, previously AGL9), and with AGAMOUS (AG, a class C protein) through SEP3. We also show that vegetative leaves of triply transgenic plants, 35S::PI;35S::AP3;35S::AP1 or 35S::PI;35S::AP3;35S::SEP3, are transformed into petaloid organs and that those of 35S::PI;35S::AP3;35S::SEP3;35S::AG are transformed into staminoid organs. Our findings indicate that the formation of ternary and quaternary complexes of ABC proteins may be the molecular basis of the ABC model, and that the flower-specific expression of SEP3 restricts the action of the ABC genes to the flower.

Journal ArticleDOI
01 Jan 2001-Fuel
TL;DR: In this paper, the transesterification reaction of rapeseed oil in supercritical methanol was investigated without using any catalyst, and it was shown that in a preheating temperature of 350°C, 240 s of supercritical treatment of methenol was sufficient to convert the rapeseed oils to methyl esters.

Journal ArticleDOI
TL;DR: An experimental system is established, which reproduces the nuclear reprogramming of somatic cells in vitro by fusing adult thymocytes with embryonic stem (ES) cells, which shows that ES cells have the capacity to reset certain aspects of the epigenotype of somatics cells to those of ES cells.

Journal ArticleDOI
TL;DR: In this article, a new 13 C -13 C recoupling mechanism was proposed for band-selective recouplings between carbonyl/aromatic carbons and aliphatic carbons under magic-angle spinning.

Journal ArticleDOI
Y. Fukuda1, M. Ishitsuka1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, K. Kaneyuki1, K. Kobayashi1, Yusuke Koshio1, M. Miura1, S. Moriyama1, Masayuki Nakahata1, S. Nakayama1, A. Okada1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, H. Takeuchi1, Y. Takeuchi1, T. Toshito1, Y. Totsuka1, Shoichi Yamada1, Shantanu Desai2, M. Earl2, E. Kearns2, M. D. Messier2, Kate Scholberg3, Kate Scholberg2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, M. Goldhaber4, T. Barszczak5, David William Casper5, W. Gajewski5, W. R. Kropp5, S. Mine5, D. W. Liu5, L. R. Price5, M. B. Smy5, Henry W. Sobel5, M. R. Vagins5, Todd Haines5, D. Kielczewska5, K. S. Ganezer6, W. E. Keig6, R. W. Ellsworth7, S. Tasaka8, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, Y. Hayato, T. Ishii, Takashi Kobayashi, Koji Nakamura, Y. Obayashi, Y. Oyama, A. Sakai, Makoto Sakuda, M. Kohama9, Atsumu Suzuki9, T. Inagaki10, Tsuyoshi Nakaya10, K. Nishikawa10, E. Blaufuss11, S. Dazeley11, R. Svoboda11, J. A. Goodman12, G. Guillian12, G. W. Sullivan12, D. Turcan12, Alec Habig13, J. Hill14, C. K. Jung14, K. Martens14, K. Martens15, Magdalena Malek14, C. Mauger14, C. McGrew14, E. Sharkey14, B. Viren14, C. Yanagisawa14, C. Mitsuda16, K. Miyano16, C. Saji16, T. Shibata16, Y. Kajiyama17, Y. Nagashima17, K. Nitta17, M. Takita17, Minoru Yoshida17, Heekyong Kim18, Soo-Bong Kim18, J. Yoo18, H. Okazawa, T. Ishizuka19, M. Etoh20, Y. Gando20, Takehisa Hasegawa20, Kunio Inoue20, K. Ishihara20, Tomoyuki Maruyama20, J. Shirai20, A. Suzuki20, Masatoshi Koshiba1, Y. Hatakeyama21, Y. Ichikawa21, M. Koike21, Kyoshi Nishijima21, H. Fujiyasu22, Hirokazu Ishino22, M. Morii22, Y. Watanabe22, U. Golebiewska23, S. C. Boyd24, A. L. Stachyra24, R. J. Wilkes24, B. Lee 
TL;DR: Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented and the recoil electron energy spectrum is consistent with no spectral distortion.
Abstract: Solar neutrino measurements from 1258days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0{endash}20.0MeV. The measured solar neutrino flux is 2.32{+-}0.03(stat){sup +0.08}{sub {minus}0.07}(syst){times}10{sup 6} cm{sup {minus}2}s{sup {minus}1} , which is 45.1{+-}0.5(stat ){sup +1.6}{sub {minus}1.4}(syst) % of that predicted by the BP2000 SSM. The day vs night flux asymmetry ({Phi}{sub n}{minus}{Phi}{sub d})/ {Phi}{sub average} is 0.033{+-}0.022(stat){sup +0.013}{sub {minus}0.012}(syst) . The recoil electron energy spectrum is consistent with no spectral distortion. For the hep neutrino flux, we set a 90% C.L.upper limit of 40{times}10{sup 3} cm{sup {minus}2}s{sup {minus}1} , which is 4.3times the BP2000 SSM prediction.

Journal ArticleDOI
01 Feb 2001-Diabetes
TL;DR: Evidence is provided that ghrelin is an orexigenic peptide that antagonizes leptin action through the activation of hypothalamic NPY/Y1 receptor pathway and is effective in growth hormone-deficient spontaneous dwarf rats.
Abstract: Ghrelin, an endogenous ligand for growth hormone secretagogue (GHS) receptor originally isolated from the stomach, occurs in the hypothalamic arcuate nucleus and may play a role in energy homeostasis. Synthetic GHSs have activated the hypothalamic arcuate neurons containing neuropeptide Y (NPY), suggesting the involvement of NPY in some of ghrelin actions. This study was designed to elucidate the role of ghrelin in the regulation of food intake. A single intracerebroventricular (ICV) injection of ghrelin (5-5,000 ng/rat) caused a significant and dose-related increase in cumulative food intake in rats. Ghrelin (500 ng/rat) was also effective in growth hormone-deficient spontaneous dwarf rats. Hypothalamic NPY mRNA expression was increased in rats that received a single ICV injection of ghrelin (500 ng/rat) (approximately 160% of that in vehicle-treated groups, P < 0.05). The ghrelin's orexigenic effect was abolished dose-dependently by ICV co-injection of NPY Y1 receptor antagonist (10-30 microg/rat). The leptin-induced inhibition of food intake was reversed by ICV co-injection of ghrelin in a dose-dependent manner (5-500 ng/rat). Leptin reduced hypothalamic NPY mRNA expression by 35% (P < 0.05), which was abolished by ICV co-injection of ghrelin (500 ng/rat). This study provides evidence that ghrelin is an orexigenic peptide that antagonizes leptin action through the activation of hypothalamic NPY/Y1 receptor pathway.


Journal ArticleDOI
06 Jul 2001-Science
TL;DR: The lowest electronic absorption bands become increasingly intensified and red-shifted upon the increase in the number of porphyrins and eventually reach a peak electronic excitation for the dodecamer at ∼3500 wavenumber.
Abstract: Scandium(III)-catalyzed oxidation of meso-meso– linked zinc(II)-porphyrin arrays (up to dodecamers) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) led to efficient formation of triply meso-meso –, β-β–, and β-β–linked zinc(II)-oligoiporphyrins with 62 to 91% yields. These fused tape-shaped porphyrin arrays display extremely red-shifted absorption bands that reflect extensively π-conjugated electronic systems and a low excitation gap. The lowest electronic absorption bands become increasingly intensified and red-shifted upon the increase in the number of porphyrins and eventually reach a peak electronic excitation for the dodecamer at ∼3500 wavenumber. The one-electron oxidation potentials also decreased progressively upon the increase in the number of porphyrins. These properties in long and rigid molecular shapes suggest their potential use as molecular wires.

Journal ArticleDOI
K. Adcox1, S. S. Adler2, N. N. Ajitanand3, Y. Akiba  +319 moreInstitutions (36)
TL;DR: In this paper, the authors measured the transverse momentum spectra for charged hadrons and neutral pions in the range 1 Gev/c < P-T < 5 GeV/c.
Abstract: Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 Gev/c < P-T < 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au + Au collisions at rootS(NN) = 130 GeV. At high p(T) the spectra from peripheral nuclear collisions are consistent with scaling the spectra from p + p collisions by the average number of binary nucleon-nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary-scaled p + p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear-medium effect in central nuclear collisions at RHIC energies.

Journal ArticleDOI
01 Apr 2001-Fuel
TL;DR: In this paper, a kinetic study in free catalyst transesterification of rapeseed oil was made in subcritical and supercritical methanol under different reaction conditions of temperatures and reaction times.

Journal ArticleDOI
TL;DR: Results indicate that the DAD1 protein is a chloroplastic phospholipase A1 that catalyzes the initial step of JA biosynthesis and is restricted in the stamen filaments.
Abstract: The Arabidopsis mutant defective in anther dehiscence1 (dad1) shows defects in anther dehiscence, pollen maturation, and flower opening. The defects were rescued by the exogenous application of jasmonic acid (JA) or linolenic acid, which is consistent with the reduced accumulation of JA in the dad1 flower buds. We identified the DAD1 gene by T-DNA tagging, which is characteristic to a putative N-terminal transit peptide and a conserved motif found in lipase active sites. DAD1 protein expressed in Escherichia coli hydrolyzed phospholipids in an sn-1-specific manner, and DAD1-green fluorescent protein fusion protein expressed in leaf epidermal cells localized predominantly in chloroplasts. These results indicate that the DAD1 protein is a chloroplastic phospholipase A1 that catalyzes the initial step of JA biosynthesis. DAD1 promoter::beta-glucuronidase analysis revealed that the expression of DAD1 is restricted in the stamen filaments. A model is presented in which JA synthesized in the filaments regulates the water transport in stamens and petals.

Journal ArticleDOI
TL;DR: It is shown that a soluble form of VEGFR-3 is a potent inhibitor of Vascular endothelial growth factor (VEGF)-C and VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal.
Abstract: The lymphatic vasculature transports extravasated tissue fluid, macromolecules and cells back into the blood circulation. Recent reports have focused on the molecular mechanisms regulating the lymphatic vessels. Vascular endothelial growth factor (VEGF)-C and VEGF-D have been shown to stimulate lymphangiogenesis and their receptor, VEGFR-3, has been linked to human hereditary lymphedema. Here we show that a soluble form of VEGFR-3 is a potent inhibitor of VEGF-C/VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal. Transgenic mice develop a lymphedema-like phenotype characterized by swelling of feet, edema and dermal fibrosis. They survive the neonatal period in spite of a virtually complete lack of lymphatic vessels in several tissues, and later show regeneration of the lymphatic vasculature, indicating that induction of lymphatic regeneration may also be possible in humans.

Journal ArticleDOI
TL;DR: It is shown that a SET domain-containing protein, G9a, is a novel mammalian lysine-preferring HMTase, like Suv39 h1, but with a 10–20-fold higher activity and may contribute to the organization of the higher order chromatin structure of non-centromeric loci.