scispace - formally typeset
Search or ask a question

Showing papers by "Kyoto University published in 2010"


Journal ArticleDOI
TL;DR: An overview of recent progress in the area of cellulose nanofibre-based nanocomposites is given in this article, with particular emphasis on applications, such as reinforced adhesives, to make optically transparent paper for electronic displays, to create DNA-hybrid materials, to generate hierarchical composites and for use in foams, aerogels and starch nanocom composites.
Abstract: This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered are those extracted from plants by acid hydrolysis (nanowhiskers), mechanical treatment and those that occur naturally (tunicate nanowhiskers) or under culturing conditions (bacterial cellulose nanofibrils). Research highlighted in the article are the use of cellulose nanowhiskers for shape memory nanocomposites, analysis of the interfacial properties of cellulose nanowhisker and nanofibril-based composites using Raman spectroscopy, switchable interfaces that mimic sea cucumbers, polymerisation from the surface of cellulose nanowhiskers by atom transfer radical polymerisation and ring opening polymerisation, and methods to analyse the dispersion of nanowhiskers. The applications and new advances covered in this review are the use of cellulose nanofibres to reinforce adhesives, to make optically transparent paper for electronic displays, to create DNA-hybrid materials, to generate hierarchical composites and for use in foams, aerogels and starch nanocomposites and the use of all-cellulose nanocomposites for enhanced coupling between matrix and fibre. A comprehensive coverage of the literature is given and some suggestions on where the field is likely to advance in the future are discussed.

2,214 citations


Journal ArticleDOI
TL;DR: The new disease/drug information resource named KEGG MEDICUS can be used as a reference knowledge base for computational analysis of molecular networks, especially, by integrating large-scale experimental datasets.
Abstract: Most human diseases are complex multi-factorial diseases resulting from the combination of various genetic and environmental factors. In the KEGG database resource (http://www.genome.jp/kegg/), diseases are viewed as perturbed states of the molecular system, and drugs as perturbants to the molecular system. Disease information is computerized in two forms: pathway maps and gene/ molecule lists. The KEGG PATHWAY database contains pathway maps for the molecular systems in both normal and perturbed states. In the KEGG DISEASE database, each disease is represented by a list of known disease genes, any known environmental factors at the molecular level, diagnostic markers and therapeutic drugs, which may reflect the underlying molecular system. The KEGG DRUG database contains chemical structures and/or chemical components of all drugs in Japan, including crude drugs and TCM (Traditional Chinese Medicine) formulas, and drugs in the USA and Europe. This database also captures knowledge about two types of molecular networks: the interaction network with target molecules, metabolizing enzymes, other drugs, etc. and the chemical structure transformation network in the history of drug development. The new disease/drug information resource named KEGG MEDICUS can be used as a reference knowledge base for computational analysis of molecular networks, especially, by integrating large-scale experimental datasets.

2,181 citations


Journal ArticleDOI
TL;DR: Recent findings regarding human TReg cells are discussed, including the ontogeny and development of TReg cell subsets that have naive or memory phenotypes, the unique mechanisms of suppression mediated by TRegcell subsets and factors that regulateTReg cell lineage commitment.
Abstract: Forkhead box P3 (FOXP3)(+) regulatory T (T(Reg)) cells are potent mediators of dominant self tolerance in the periphery. But confusion as to the identity, stability and suppressive function of human T(Reg) cells has, to date, impeded the general therapeutic use of these cells. Recent studies have suggested that human T(Reg) cells are functionally and phenotypically diverse. Here we discuss recent findings regarding human T(Reg) cells, including the ontogeny and development of T(Reg) cell subsets that have naive or memory phenotypes, the unique mechanisms of suppression mediated by T(Reg) cell subsets and factors that regulate T(Reg) cell lineage commitment. We discuss future studies that are needed for the successful therapeutic use of human T(Reg) cells.

2,134 citations


Journal ArticleDOI
Thomas J. Hudson1, Thomas J. Hudson2, Warwick Anderson3, Axel Aretz4  +270 moreInstitutions (92)
15 Apr 2010
TL;DR: Systematic studies of more than 25,000 cancer genomes will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Abstract: The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

2,041 citations


Journal ArticleDOI
TL;DR: MassBank is the first public repository of mass spectra of small chemical compounds for life sciences and provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions.
Abstract: MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.

1,689 citations


Journal ArticleDOI
TL;DR: The concept of diabetes mellitus as mentioned in this paper is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action.
Abstract: Concept of Diabetes Mellitus: Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action. Its pathogenesis involves both genetic and environmental factors. The long‐term persistence of metabolic disorders can cause susceptibility to specific complications and also foster arteriosclerosis. Diabetes mellitus is associated with a broad range of clinical presentations, from being asymptomatic to ketoacidosis or coma, depending on the degree of metabolic disorder.

1,446 citations


Journal ArticleDOI
24 Sep 2010-Science
TL;DR: The Turing or reaction-diffusion (RD) model is one of the best-known theoretical models used to explain self-regulated pattern formation in the developing animal embryo as mentioned in this paper.
Abstract: The Turing, or reaction-diffusion (RD), model is one of the best-known theoretical models used to explain self-regulated pattern formation in the developing animal embryo. Although its real-world relevance was long debated, a number of compelling examples have gradually alleviated much of the skepticism surrounding the model. The RD model can generate a wide variety of spatial patterns, and mathematical studies have revealed the kinds of interactions required for each, giving this model the potential for application as an experimental working hypothesis in a wide variety of morphological phenomena. In this review, we describe the essence of this theory for experimental biologists unfamiliar with the model, using examples from experimental studies in which the RD model is effectively incorporated.

1,309 citations


Journal ArticleDOI
08 Sep 2010-JAMA
TL;DR: Compared with the use of fluorouracil plus folinic acid, gemcitabine did not result in improved overall survival in patients with completely resected pancreatic cancer.
Abstract: Context Adjuvant fluorouracil has been shown to be of benefit for patients with resected pancreatic cancer. Gemcitabine is known to be the most effective agent in advanced disease as well as an effective agent in patients with resected pancreatic cancer. Objective To determine whether fluorouracil or gemcitabine is superior in terms of overall survival as adjuvant treatment following resection of pancreatic cancer. Design, Setting, and Patients The European Study Group for Pancreatic Cancer (ESPAC)-3 trial, an open-label, phase 3, randomized controlled trial conducted in 159 pancreatic cancer centers in Europe, Australasia, Japan, and Canada. Included in ESPAC-3 version 2 were 1088 patients with pancreatic ductal adenocarcinoma who had undergone cancer resection; patients were randomized between July 2000 and January 2007 and underwent at least 2 years of follow-up. Interventions Patients received either fluorouracil plus folinic acid (folinic acid, 20 mg/m(2), intravenous bolus injection, followed by fluorouracil, 425 mg/m(2) intravenous bolus injection given 1-5 days every 28 days) (n=551) or gemcitabine (1000 mg/m2 intravenous infusion once a week for 3 of every 4 weeks) (n=537) for 6 months. Main Outcome Measures Primary outcome measure was overall survival; secondary measures were toxicity, progression-free survival, and quality of life. Results Final analysis was carried out on an intention-to-treat basis after a median of 34.2 (interquartile range, 27.1-43.4) months' follow-up after 753 deaths (69%). Median survival was 23.0 (95% confidence interval [CI], 21.1-25.0) months for patients treated with fluorouracil plus folinic acid and 23.6 (95% CI, 21.4-26.4) months for those treated with gemcitabine (chi(2)(1) = 0.7; P = .39; hazard ratio, 0.94 [95% CI, 0.81-1.08]). Seventy-seven patients (14%) receiving fluorouracil plus folinic acid had 97 treatment-related serious adverse events, compared with 40 patients (7.5%) receiving gemcitabine, who had 52 events (P<.001). There were no significant differences in either progression-free survival or global quality-of-life scores between the treatment groups. Conclusion Compared with the use of fluorouracil plus folinic acid, gemcitabine did not result in improved overall survival in patients with completely resected pancreatic cancer.

1,203 citations


Journal ArticleDOI
13 May 2010-Nature
TL;DR: It is shown that there are mutations in the gene encoding optineurin (OPTN), earlier reported to be a causative gene of primary open-angle glaucoma (POAG), in patients with ALS and these findings strongly suggest that OPTN is involved in the pathogenesis of ALS.
Abstract: Amyotrophic lateral sclerosis (ALS) has its onset in middle age and is a progressive disorder characterized by degeneration of motor neurons of the primary motor cortex, brainstem and spinal cord. Most cases of ALS are sporadic, but about 10% are familial. Genes known to cause classic familial ALS (FALS) are superoxide dismutase 1 (SOD1), ANG encoding angiogenin, TARDP encoding transactive response (TAR) DNA-binding protein TDP-43 (ref. 4) and fused in sarcoma/translated in liposarcoma (FUS, also known as TLS). However, these genetic defects occur in only about 20-30% of cases of FALS, and most genes causing FALS are unknown. Here we show that there are mutations in the gene encoding optineurin (OPTN), earlier reported to be a causative gene of primary open-angle glaucoma (POAG), in patients with ALS. We found three types of mutation of OPTN: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Analysis of cell transfection showed that the nonsense and missense mutations of OPTN abolished the inhibition of activation of nuclear factor kappa B (NF-kappaB), and the E478G mutation revealed a cytoplasmic distribution different from that of the wild type or a POAG mutation. A case with the E478G mutation showed OPTN-immunoreactive cytoplasmic inclusions. Furthermore, TDP-43- or SOD1-positive inclusions of sporadic and SOD1 cases of ALS were also noticeably immunolabelled by anti-OPTN antibodies. Our findings strongly suggest that OPTN is involved in the pathogenesis of ALS. They also indicate that NF-kappaB inhibitors could be used to treat ALS and that transgenic mice bearing various mutations of OPTN will be relevant in developing new drugs for this disorder.

1,178 citations


Journal ArticleDOI
TL;DR: It is shown that oligomers of islet amyloid polypeptide (IAPP), a protein that formsAmyloid deposits in the pancreas during type 2 diabetes, triggered the NLRP3 inflammasome and generated mature IL-1β.
Abstract: Interleukin 1β (IL-1β) is an important inflammatory mediator of type 2 diabetes Here we show that oligomers of islet amyloid polypeptide (IAPP), a protein that forms amyloid deposits in the pancreas during type 2 diabetes, triggered the NLRP3 inflammasome and generated mature IL-1β One therapy for type 2 diabetes, glyburide, suppressed IAPP-mediated IL-1β production in vitro Processing of IL-1β initiated by IAPP first required priming, a process that involved glucose metabolism and was facilitated by minimally oxidized low-density lipoprotein Finally, mice transgenic for human IAPP had more IL-1β in pancreatic islets, which localized together with amyloid and macrophages Our findings identify previously unknown mechanisms in the pathogenesis of type 2 diabetes and treatment of pathology caused by IAPP

1,157 citations


Journal ArticleDOI
TL;DR: New ways of treating immunological diseases by targeting Treg cells at the cellular and molecular levels are envisaged.
Abstract: Immunological self tolerance is maintained at least in part by regulatory T (Treg) cells that actively and dominantly control potentially hazardous self-reactive T cells in the periphery. Antigens that stimulate self-reactive T cells may also activate natural Treg cells, thereby maintaining dominant self tolerance. Conversely, genetic anomalies or environmental agents that specifically or predominantly affect Treg cells cause or predispose to autoimmunity. With recent advances in our understanding of Treg cell development in the thymus and periphery and the molecular mechanism of Treg cell–mediated suppression, new ways of treating immunological diseases by targeting Treg cells at the cellular and molecular levels are envisaged.

Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Alice Allafort1, Elisa Antolini2  +211 moreInstitutions (40)
TL;DR: The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented in this article, which includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs.
Abstract: The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented. The second LAT AGN catalog (2LAC) includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs. However, some of these are affected by analysis issues and some are associated with multiple AGNs. Consequently, we define a Clean Sample which includes 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310 flat-spectrum radio quasars (FSRQs), 157 candidate blazars of unknown type (i.e., with broadband blazar characteristics but with no optical spectral measurement yet), 8 misaligned AGNs, 4 narrow-line Seyfert 1 (NLS1s), 10 AGNs of other types, and 2 starburst galaxies. Where possible, the blazars have been further classified based on their spectral energy distributions (SEDs) as archival radio, optical, and X-ray data permit. While almost all FSRQs have a synchrotron-peak frequency 1015 Hz. The 2LAC represents a significant improvement relative to the first LAT AGN catalog (1LAC), with 52% more associated sources. The full characterization of the newly detected sources will require more broadband data. Various properties, such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities and their correlations are presented and discussed for the different blazar classes. The general trends observed in 1LAC are confirmed.

Journal ArticleDOI
TL;DR: In this article, a review of pedagogically non-Abelian discrete groups, which play an important role in the particle physics, is presented, and the authors show group-theoretical aspects for many concrete groups, such as representations, characters, representations, and tensor products.
Abstract: We review pedagogically non-Abelian discrete groups, which play an important role in the particle physics. We show group-theoretical aspects for many concrete groups, such as representations, their tensor products. We explain how to derive, conjugacy classes, characters, representations, and tensor products for these groups (with a finite number). We discussed them explicitly for $S_N$, $A_N$, $T'$, $D_N$, $Q_N$, $\Sigma(2N^2)$, $\Delta(3N^2)$, $T_7$, $\Sigma(3N^3)$ and $\Delta(6N^2)$, which have been applied for model building in the particle physics. We also present typical flavor models by using $A_4$, $S_4$, and $\Delta (54)$ groups. Breaking patterns of discrete groups and decompositions of multiplets are important for applications of the non-Abelian discrete symmetry. We discuss these breaking patterns of the non-Abelian discrete group, which are a powerful tool for model buildings. We also review briefly about anomalies of non-Abelian discrete symmetries by using the path integral approach.

Journal ArticleDOI
TL;DR: Results indicate that cancer vaccines targeting tumor‐associated self‐antigens may potentially expand/activate Tregs and hamper effective antitumor immune responses, and that tumor immunity can therefore be enhanced by depleting T Regs, attenuating Treg suppressive function, or rendering effector T cells refractory to Treg‐mediated suppression.
Abstract: Recent studies have revealed that Foxp3(+)CD25(+)CD4(+) regulatory T cells (Tregs), which are physiologically engaged in the maintenance of immunological self-tolerance, play critical roles for the control of antitumor immune responses. For example, a large number of Foxp3(+)Tregs infiltrate into tumors, and systemic removal of Foxp3(+)Tregs enhances natural as well as vaccine-induced antitumor T-cell responses. Tregs are recruited to tumor tissues via chemokines, such as CCL22 binding to CCR4 expressed by Tregs. They appear to expand and become activated in tumor tissues and in the draining lymph nodes by recognizing tumor-associated antigens as well as normal self-antigen expressed by tumor cells. These results indicate that cancer vaccines targeting tumor-associated self-antigens may potentially expand/activate Tregs and hamper effective antitumor immune responses, and that tumor immunity can therefore be enhanced by depleting Tregs, attenuating Treg suppressive function, or rendering effector T cells refractory to Treg-mediated suppression. Recent attempts have indeed demonstrated that combinations of monoclonal antibodies capable of modulating Treg functions synergistically enhance antitumor activity and are more effective than a single monoclonal antibody therapy. Combination therapy targeting a variety of molecules expressed in antigen-presenting cells, effector T cells and Tregs is envisaged to be a promising anticancer immunotherapy.

Journal ArticleDOI
TL;DR: With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters and as an application for driving a micromachine, a microrotor is demonstrated.
Abstract: We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.

Journal ArticleDOI
09 Dec 2010-Nature
TL;DR: It is shown that TMEM16F (transmembrane protein 16F) is an essential component for the Ca2+-dependent exposure of PtdSer on the cell surface, which results from a defect in phospholipid scrambling activity and is found to carry a mutation at a splice-acceptor site of the gene encoding TMEM 16F, causing the premature termination of the protein.
Abstract: In all animal cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. This asymmetrical phospholipid distribution is disrupted in various biological systems. For example, when blood platelets are activated, they expose phosphatidylserine (PtdSer) to trigger the clotting system. The PtdSer exposure is believed to be mediated by Ca(2+)-dependent phospholipid scramblases that transport phospholipids bidirectionally, but its molecular mechanism is still unknown. Here we show that TMEM16F (transmembrane protein 16F) is an essential component for the Ca(2+)-dependent exposure of PtdSer on the cell surface. When a mouse B-cell line, Ba/F3, was treated with a Ca(2+) ionophore under low-Ca(2+) conditions, it reversibly exposed PtdSer. Using this property, we established a Ba/F3 subline that strongly exposed PtdSer by repetitive fluorescence-activated cell sorting. A complementary DNA library was constructed from the subline, and a cDNA that caused Ba/F3 to expose PtdSer spontaneously was identified by expression cloning. The cDNA encoded a constitutively active mutant of TMEM16F, a protein with eight transmembrane segments. Wild-type TMEM16F was localized on the plasma membrane and conferred Ca(2+)-dependent scrambling of phospholipids. A patient with Scott syndrome, which results from a defect in phospholipid scrambling activity, was found to carry a mutation at a splice-acceptor site of the gene encoding TMEM16F, causing the premature termination of the protein.

Journal ArticleDOI
TL;DR: Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action, which can cause susceptibility to specific complications and also foster arteriosclerosis.
Abstract: Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action. Its pathogenesis involves both genetic and environmental factors. The long-term persistence of metabolic disorders can cause susceptibility to specific complications and also foster arteriosclerosis. Diabetes mellitus is associated with a broad range of clinical presentations, from being asymptomatic to ketoacidosis or coma, depending on the degree of metabolic disorder.

Journal ArticleDOI
05 Mar 2010-Cell
TL;DR: How the endogenous components of dead cells activate the immune system through both extracellular and intracellular pathways is discussed.

Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: Using three distinct experimental approaches to nuclear reprogramming, nuclei from 'terminally differentiated' somatic cells can be induced to express genes that are typical of embryonic stem cells, which can differentiate to form all of the cell types in the body.
Abstract: The stable states of differentiated cells are now known to be controlled by dynamic mechanisms that can easily be perturbed. An adult cell can therefore be reprogrammed, altering its pattern of gene expression, and hence its fate, to that typical of another cell type. This has been shown by three distinct experimental approaches to nuclear reprogramming: nuclear transfer, cell fusion and transcription-factor transduction. Using these approaches, nuclei from 'terminally differentiated' somatic cells can be induced to express genes that are typical of embryonic stem cells, which can differentiate to form all of the cell types in the body. This remarkable discovery of cellular plasticity has important medical applications.

Journal ArticleDOI
24 Sep 2010-Immunity
TL;DR: HSCs from CAR cell-depleted mice were reduced in number and cell size, were more quiescent, and had increased expression of early myeloid selector genes, similar to the phenotype of wild-type HSCs cultured without a niche.

Journal ArticleDOI
05 May 2010-JAMA
TL;DR: Among the RCTs included, postoperative adjuvant chemotherapy based on fluorouracil regimens was associated with reduced risk of death in gastric cancer compared with surgery alone.
Abstract: CONTEXT Despite potentially curative resection of stomach cancer, 50% to 90% of patients die of disease relapse. Numerous randomized clinical trials (RCTs) have compared surgery alone with adjuvant chemotherapy, but definitive evidence is lacking. OBJECTIVES To perform an individual patient-level meta-analysis of all RCTs to quantify the potential benefit of chemotherapy after complete resection over surgery alone in terms of overall survival and disease-free survival, and to further study the role of regimens, including monochemotherapy; combined chemotherapy with fluorouracil derivatives, mitomycin C, and other therapies but no anthracyclines; combined chemotherapy with fluorouracil derivatives, mitomycin C, and anthracyclines; and other treatments. DATA SOURCES Data from all RCTs comparing adjuvant chemotherapy with surgery alone in patients with resectable gastric cancer. We searched MEDLINE (up to 2009), the Cochrane Central Register of Controlled Trials, the National Institutes of Health trial registry, and published proceedings from major oncologic and gastrointestinal cancer meetings. STUDY SELECTION All RCTs closed to patient recruitment before 2004 were eligible. Trials testing radiotherapy; neoadjuvant, perioperative, or intraperitoneal chemotherapy; or immunotherapy were excluded. Thirty-one eligible trials (6390 patients) were identified. DATA EXTRACTION As of 2010, individual patient data were available from 17 trials (3838 patients representing 60% of the targeted data) with a median follow-up exceeding 7 years. RESULTS There were 1000 deaths among 1924 patients assigned to chemotherapy groups and 1067 deaths among 1857 patients assigned to surgery-only groups. Adjuvant chemotherapy was associated with a statistically significant benefit in terms of overall survival (hazard ratio [HR], 0.82; 95% confidence interval [CI], 0.76-0.90; P < .001) and disease-free survival (HR, 0.82; 95% CI, 0.75-0.90; P < .001). There was no significant heterogeneity for overall survival across RCTs (P = .52) or the 4 regimen groups (P = .13). Five-year overall survival increased from 49.6% to 55.3% with chemotherapy. CONCLUSION Among the RCTs included, postoperative adjuvant chemotherapy based on fluorouracil regimens was associated with reduced risk of death in gastric cancer compared with surgery alone.

Journal ArticleDOI
23 Dec 2010-Nature
TL;DR: Evidence is provided that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem, the first evidence, to the authors' knowledge, that subtypes of medULLoblastomas have distinct cellular origins.
Abstract: Medulloblastomas are the most common malignant childhood brain tumours and are thought to arise from the cerebellum. There is substantial heterogeneity among medulloblastomas and some are thought to arise following aberrant Sonic Hedgehog pathway activation. It is now shown that a distinct subtype of medulloblastoma arises from the dorsal brainstem and is associated with altered WNT signalling. Distinct molecular and clinical profiles of the subtypes have implications for future treatment.

Journal ArticleDOI
17 Feb 2010-Nature
TL;DR: It is proposed that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.
Abstract: Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for >10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Kruppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.

Journal ArticleDOI
Emek Demir1, Emek Demir2, Michael P. Cary1, Suzanne M. Paley3, Ken Fukuda, Christian Lemer4, Imre Vastrik, Guanming Wu5, Peter D'Eustachio6, Carl F. Schaefer7, Joanne S. Luciano, Frank Schacherer, Irma Martínez-Flores8, Zhenjun Hu9, Verónica Jiménez-Jacinto8, Geeta Joshi-Tope10, Kumaran Kandasamy11, Alejandra López-Fuentes8, Huaiyu Mi3, Elgar Pichler, Igor Rodchenkov12, Andrea Splendiani13, Andrea Splendiani14, Sasha Tkachev15, Jeremy Zucker16, Gopal R. Gopinath17, Harsha Rajasimha7, Harsha Rajasimha18, Ranjani Ramakrishnan19, Imran Shah20, Mustafa H Syed21, Nadia Anwar1, Özgün Babur2, Özgün Babur1, Michael L. Blinov22, Erik Brauner23, Dan Corwin, Sylva L. Donaldson12, Frank Gibbons23, Robert N. Goldberg24, Peter Hornbeck15, Augustin Luna7, Peter Murray-Rust25, Eric K. Neumann, Oliver Reubenacker22, Matthias Samwald26, Matthias Samwald27, Martijn P. van Iersel28, Sarala M. Wimalaratne29, Keith Allen30, Burk Braun, Michelle Whirl-Carrillo31, Kei-Hoi Cheung32, Kam D. Dahlquist33, Andrew Finney, Marc Gillespie34, Elizabeth M. Glass21, Li Gong31, Robin Haw5, Michael Honig35, Olivier Hubaut4, David W. Kane36, Shiva Krupa37, Martina Kutmon38, Julie Leonard30, Debbie Marks23, David Merberg39, Victoria Petri40, Alexander R. Pico41, Dean Ravenscroft42, Liya Ren10, Nigam H. Shah31, Margot Sunshine7, Rebecca Tang30, Ryan Whaley30, Stan Letovksy43, Kenneth H. Buetow7, Andrey Rzhetsky44, Vincent Schächter45, Bruno S. Sobral18, Ugur Dogrusoz2, Shannon K. McWeeney19, Mirit I. Aladjem7, Ewan Birney, Julio Collado-Vides8, Susumu Goto46, Michael Hucka47, Nicolas Le Novère, Natalia Maltsev21, Akhilesh Pandey11, Paul Thomas3, Edgar Wingender, Peter D. Karp3, Chris Sander1, Gary D. Bader12 
TL;DR: Thousands of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases, and this large amount of pathway data in a computable form will support visualization, analysis and biological discovery.
Abstract: Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

Journal ArticleDOI
TL;DR: An absolute requirement of Notch signaling for the maintenance of neural stem cells and a proper control of neurogenesis in both embryonic and adult brains is indicated.
Abstract: Activation of Notch signaling induces the expression of transcriptional repressor genes such as Hes1, leading to repression of proneural gene expression and maintenance of neural stem/progenitor cells. However, a requirement for Notch signaling in the telencephalon was not clear, because in Hes1;Hes3;Hes5 triple-mutant mice, neural stem/progenitor cells are depleted in most regions of the developing CNS, but not in the telencephalon. Here, we investigated a role for Notch signaling in the telencephalon by generating tamoxifen-inducible conditional knock-out mice that lack Rbpj, an intracellular signal mediator of all Notch receptors. When Rbpj was deleted in the embryonic brain, almost all telencephalic neural stem/progenitor cells prematurely differentiated into neurons and were depleted. When Rbpj was deleted in the adult brain, all neural stem cells differentiated into transit-amplifying cells and neurons. As a result, neurogenesis increased transiently, but 3 months later all neural stem cells were depleted and neurogenesis was totally lost. These results indicated an absolute requirement of Notch signaling for the maintenance of neural stem cells and a proper control of neurogenesis in both embryonic and adult brains.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3098 moreInstitutions (192)
TL;DR: In this article, the authors used the ATLAS detector to detect dijet asymmetry in the collisions of lead ions at the Large Hadron Collider and found that the transverse energies of dijets in opposite hemispheres become systematically more unbalanced with increasing event centrality, leading to a large number of events which contain highly asymmetric di jets.
Abstract: By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

Journal ArticleDOI
01 Apr 2010-Cancer
TL;DR: Investigation of the mechanism underlining the immunosuppression of melanoma patients focused on programmed cell death‐1/PD‐1 ligand 1 (PD‐L1) interaction between tumor cells and T cells.
Abstract: BACKGROUND: Melanoma tends to be refractory to various immunotherapies because of tumor-induced immunosuppression. To investigate the mechanism underlining the immunosuppression of melanoma patients, the authors focused on programmed cell death-1 (PD-1)/PD-1 ligand 1 (PD-L1) interaction between tumor cells and T cells. METHODS: Melanoma specimens were collected from 59 primary tumors, 16 lymph nodes, and 4 lesions of in-transit metastasis. Specimens stained with anti-PD-L1 monoclonal antibodies were digitalized to jpg files. To evaluate the intensity of PD-L1 expression, histograms were used, and the red density (RD) was measured. PD-1 expression on T cells was analyzed in blood samples from 10 patients who had stage IV melanoma and in 4 samples of in-transit metastases. RESULTS: Twenty-five patients comprised the ‘‘low’’ PD-L1 expression group (RD value, <90), and 34 patients comprised the ‘‘high’’ group (RD value, � 90). Breslow tumor thickness in the high-expression group was significantly higher than in the low-expression group. Univariate and multivariate analyses revealed that the overall survival rate of the high-expression group was significantly lower than that of the low-expression group. In all patients with stage IV disease who were examined, both CD8-positive and CD4-positive T cells had significantly higher PD-1 expression levels in the peripheral blood. Tumor-infiltrating T cells expressed high levels of PD-1, and its expression was elevated further during the clinical course. CONCLUSIONS: The current results indicated that there is a correlation between the degree of PD-L1 expression and the vertical growth of primary tumors in melanoma. Multivariate analysis demonstrated that PD-L1 expression is an independent prognostic factor for melanoma. Cancer 2010;116:1757–66. V C 2010 American Cancer Society.

Journal ArticleDOI
TL;DR: The present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain.
Abstract: RNA virus infection is recognized by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm RLRs are comprised of N-terminal caspase-recruitment domains (CARDs) and a DExD/H-box helicase domain The third member of the RLR family, LGP2, lacks any CARDs and was originally identified as a negative regulator of RLR signaling In the present study, we generated mice lacking LGP2 and found that LGP2 was required for RIG-I- and MDA5-mediated antiviral responses In particular, LGP2 was essential for type I IFN production in response to picornaviridae infection Overexpression of the CARDs from RIG-I and MDA5 in Lgp2(-/-) fibroblasts activated the IFN-beta promoter, suggesting that LGP2 acts upstream of RIG-I and MDA5 We further examined the role of the LGP2 helicase domain by generating mice harboring a point mutation of Lys-30 to Ala (Lgp2 (K30A/K30A)) that abrogated the LGP2 ATPase activity Lgp2 (K30A/K30A) dendritic cells showed impaired IFN-beta productions in response to various RNA viruses to extents similar to those of Lgp2(-/-) cells Lgp2(-/-) and Lgp2 (K30A/K30A) mice were highly susceptible to encephalomyocarditis virus infection Nevertheless, LGP2 and its ATPase activity were dispensable for the responses to synthetic RNA ligands for MDA5 and RIG-I Taken together, the present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain

Journal ArticleDOI
TL;DR: Peripheral administration of IFN-α activated IDO in concert with central cytokine responses, resulting in increased brain KYN and QUIN, which correlated with depressive symptoms.
Abstract: Cytokine-induced activation of indoleamine 2,3-dioxygenase (IDO) catabolizes L-tryptophan (TRP) into L-kynurenine (KYN), which is metabolized to quinolinic acid (QUIN) and kynurenic acid (KA). QUIN and KA are neuroactive and may contribute to the behavioral changes experienced by some patients during exposure to inflammatory stimuli such as interferon (IFN)-alpha. A relationship between depressive symptoms and peripheral blood TRP, KYN and KA during treatment with IFN-alpha has been described. However, whether peripheral blood changes in these IDO catabolites are manifest in the brain and whether they are related to central nervous system cytokine responses and/or behavior is unknown. Accordingly, TRP, KYN, QUIN and KA were measured in cerebrospinal fluid (CSF) and blood along with CSF concentrations of relevant cytokines, chemokines and soluble cytokine receptors in 27 patients with hepatitis C after approximately 12 weeks of either treatment with IFN-alpha (n=16) or no treatment (n=11). Depressive symptoms were assessed using the Montgomery-Asberg Depression Rating Scale. IFN-alpha significantly increased peripheral blood KYN, which was accompanied by marked increases in CSF KYN. Increased CSF KYN was in turn associated with significant increases in CSF QUIN and KA. Despite significant decreases in peripheral blood TRP, IFN-alpha had no effect on CSF TRP concentrations. Increases in CSF KYN and QUIN were correlated with increased CSF IFN-alpha, soluble tumor necrosis factor-alpha receptor 2 and monocyte chemoattractant protein-1 as well as increased depressive symptoms. In conclusion, peripheral administration of IFN-alpha activated IDO in concert with central cytokine responses, resulting in increased brain KYN and QUIN, which correlated with depressive symptoms.

Journal ArticleDOI
TL;DR: NBI could be the standard examination for the early detection of superficial cancer in the H&N region and the esophagus between conventional white light imaging and NBI in high-risk patients.
Abstract: Purpose Most of the esophageal squamous cell carcinomas (ESCCs) and cancers of the head and neck (HN 97% v 55%, P < .001, respectively). The sensitivity ...