scispace - formally typeset
Search or ask a question

Showing papers by "Kyoto University published in 2015"


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.

6,508 citations


Posted Content
TL;DR: In this article, the authors demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science, and demonstrate the importance of first principles phonon calculation in dynamical behaviors and thermal properties.
Abstract: Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.

2,993 citations


Journal ArticleDOI
Peter H. Sudmant1, Tobias Rausch, Eugene J. Gardner2, Robert E. Handsaker3, Robert E. Handsaker4, Alexej Abyzov5, John Huddleston1, Yan Zhang6, Kai Ye7, Goo Jun8, Goo Jun9, Markus His Yang Fritz, Miriam K. Konkel10, Ankit Malhotra, Adrian M. Stütz, Xinghua Shi11, Francesco Paolo Casale12, Jieming Chen6, Fereydoun Hormozdiari1, Gargi Dayama8, Ken Chen13, Maika Malig1, Mark Chaisson1, Klaudia Walter12, Sascha Meiers, Seva Kashin3, Seva Kashin4, Erik Garrison14, Adam Auton15, Hugo Y. K. Lam, Xinmeng Jasmine Mu6, Xinmeng Jasmine Mu3, Can Alkan16, Danny Antaki17, Taejeong Bae5, Eliza Cerveira, Peter S. Chines18, Zechen Chong13, Laura Clarke12, Elif Dal16, Li Ding7, S. Emery8, Xian Fan13, Madhusudan Gujral17, Fatma Kahveci16, Jeffrey M. Kidd8, Yu Kong15, Eric-Wubbo Lameijer19, Shane A. McCarthy12, Paul Flicek12, Richard A. Gibbs20, Gabor T. Marth14, Christopher E. Mason21, Androniki Menelaou22, Androniki Menelaou23, Donna M. Muzny24, Bradley J. Nelson1, Amina Noor17, Nicholas F. Parrish25, Matthew Pendleton24, Andrew Quitadamo11, Benjamin Raeder, Eric E. Schadt24, Mallory Romanovitch, Andreas Schlattl, Robert Sebra24, Andrey A. Shabalin26, Andreas Untergasser27, Jerilyn A. Walker10, Min Wang20, Fuli Yu20, Chengsheng Zhang, Jing Zhang6, Xiangqun Zheng-Bradley12, Wanding Zhou13, Thomas Zichner, Jonathan Sebat17, Mark A. Batzer10, Steven A. McCarroll4, Steven A. McCarroll3, Ryan E. Mills8, Mark Gerstein6, Ali Bashir24, Oliver Stegle12, Scott E. Devine2, Charles Lee28, Evan E. Eichler1, Jan O. Korbel12 
01 Oct 2015-Nature
TL;DR: In this paper, the authors describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which are constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations.
Abstract: Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

1,971 citations


Journal ArticleDOI
22 May 2015-Science
TL;DR: This work identifies ocean microbial core functionality and reveals that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.
Abstract: Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.

1,934 citations


Journal ArticleDOI
Sandra Díaz1, Sebsebe Demissew2, Julia Carabias3, Carlos Alfredo Joly4, Mark Lonsdale, Neville Ash5, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico6, András Báldi, Ann M. Bartuska7, Ivar Andreas Baste, Adem Bilgin, Eduardo S. Brondizio8, Kai M. A. Chan9, Viviana E. Figueroa, Anantha Kumar Duraiappah, Markus Fischer, Rosemary Hill10, Thomas Koetz, Paul Leadley11, Philip O'b. Lyver12, Georgina M. Mace13, Berta Martín-López14, Michiko Okumura5, Diego Pacheco, Unai Pascual15, Edgar Selvin Pérez, Belinda Reyers16, Eva Roth17, Osamu Saito18, Robert J. Scholes19, Nalini Sharma5, Heather Tallis20, Randolph R. Thaman21, Robert T. Watson22, Tetsukazu Yahara23, Zakri Abdul Hamid, Callistus Akosim, Yousef S. Al-Hafedh24, Rashad Allahverdiyev, Edward Amankwah, T. Stanley Asah25, Zemede Asfaw2, Gabor Bartus26, Anathea L. Brooks6, Jorge Caillaux27, Gemedo Dalle, Dedy Darnaedi, Amanda Driver (Sanbi), Gunay Erpul28, Pablo Escobar-Eyzaguirre, Pierre Failler29, Ali Moustafa Mokhtar Fouda, Bojie Fu30, Haripriya Gundimeda31, Shizuka Hashimoto32, Floyd Homer, Sandra Lavorel33, Gabriela Lichtenstein34, William Armand Mala35, Wadzanayi Mandivenyi, Piotr Matczak36, Carmel Mbizvo, Mehrasa Mehrdadi, Jean Paul Metzger37, Jean Bruno Mikissa38, Henrik Moller39, Harold A. Mooney40, Peter J. Mumby41, Harini Nagendra42, Carsten Nesshöver43, Alfred Oteng-Yeboah44, György Pataki45, Marie Roué, Jennifer Rubis6, Maria Schultz46, Peggy Smith47, Rashid Sumaila9, Kazuhiko Takeuchi18, Spencer Thomas, Madhu Verma48, Youn Yeo-Chang49, Diana Zlatanova50 
National University of Cordoba1, Addis Ababa University2, National Autonomous University of Mexico3, State University of Campinas4, United Nations Environment Programme5, UNESCO6, United States Department of Agriculture7, Indiana University8, University of British Columbia9, Commonwealth Scientific and Industrial Research Organisation10, University of Paris-Sud11, Landcare Research12, University College London13, Autonomous University of Madrid14, University of Cambridge15, Council for Scientific and Industrial Research16, University of Southern Denmark17, United Nations University18, Virginia Tech College of Natural Resources and Environment19, The Nature Conservancy20, University of the South Pacific21, University of East Anglia22, Kyushu University23, King Abdulaziz City for Science and Technology24, University of Washington25, Budapest University of Technology and Economics26, Environmental Law Institute27, Ankara University28, University of Portsmouth29, Chinese Academy of Sciences30, Indian Institute of Technology Bombay31, Kyoto University32, Joseph Fourier University33, National Scientific and Technical Research Council34, University of Yaoundé35, Polish Academy of Sciences36, University of São Paulo37, École Normale Supérieure38, University of Otago39, Stanford University40, University of Queensland41, Azim Premji University42, Helmholtz Centre for Environmental Research - UFZ43, University of Ghana44, Corvinus University of Budapest45, Stockholm University46, Lakehead University47, Indian Institute of Forest Management48, Seoul National University49, Sofia University50
TL;DR: The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework as discussed by the authors, which will underpin all IPBES functions and provide structure and comparability to the syntheses that will produce at different spatial scales, on different themes, and in different regions.

1,585 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations


Journal ArticleDOI
TL;DR: Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning.
Abstract: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs) Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer © 2015 Wiley Periodicals, Inc

1,445 citations


Journal ArticleDOI
Colomban de Vargas1, Colomban de Vargas2, Stéphane Audic1, Stéphane Audic2, Nicolas Henry1, Nicolas Henry2, Johan Decelle1, Johan Decelle2, Frédéric Mahé2, Frédéric Mahé1, Frédéric Mahé3, Ramiro Logares4, Enrique Lara, Cédric Berney1, Cédric Berney2, Noan Le Bescot1, Noan Le Bescot2, Ian Probert2, Ian Probert1, Margaux Carmichael5, Margaux Carmichael1, Margaux Carmichael2, Julie Poulain6, Sarah Romac1, Sarah Romac2, Sébastien Colin5, Sébastien Colin1, Sébastien Colin2, Jean-Marc Aury6, Lucie Bittner, Samuel Chaffron7, Samuel Chaffron8, Micah Dunthorn3, Stefan Engelen6, Olga Flegontova9, Olga Flegontova10, Lionel Guidi1, Lionel Guidi2, Aleš Horák9, Aleš Horák10, Olivier Jaillon6, Olivier Jaillon2, Olivier Jaillon11, Gipsi Lima-Mendez7, Gipsi Lima-Mendez8, Julius Lukeš9, Julius Lukeš12, Julius Lukeš10, Shruti Malviya5, Raphael Morard2, Raphael Morard13, Raphael Morard1, Matthieu Mulot, Eleonora Scalco14, Raffaele Siano15, Flora Vincent8, Flora Vincent5, Adriana Zingone14, Céline Dimier2, Céline Dimier1, Céline Dimier5, Marc Picheral2, Marc Picheral1, Sarah Searson1, Sarah Searson2, Stefanie Kandels-Lewis16, Tara Oceans Coordinators17, Silvia G. Acinas4, Peer Bork18, Peer Bork16, Chris Bowler5, Gabriel Gorsky2, Gabriel Gorsky1, Nigel Grimsley19, Nigel Grimsley2, Pascal Hingamp20, Daniele Iudicone14, Fabrice Not1, Fabrice Not2, Hiroyuki Ogata17, Stephane Pesant13, Jeroen Raes8, Jeroen Raes7, Michael E. Sieracki21, Michael E. Sieracki22, Sabrina Speich23, Sabrina Speich5, Lars Stemmann2, Lars Stemmann1, Shinichi Sunagawa16, Jean Weissenbach6, Jean Weissenbach2, Jean Weissenbach11, Patrick Wincker6, Patrick Wincker2, Patrick Wincker11, Eric Karsenti16, Eric Karsenti5 
22 May 2015-Science
TL;DR: Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies.
Abstract: Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.

1,378 citations


Journal ArticleDOI
TL;DR: Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1).
Abstract: Core–shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g–1) calculated from the galvanostatic charge–discharge curves at a current density of 2 A·g–1. Our study not only bridges diverse carbon-based materials with infinite metal–organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.

1,233 citations



Journal ArticleDOI
TL;DR: In this article, a catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory is presented, and the current understanding of the structure and dynamics of compact objects in these theories is summarized.
Abstract: One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

Journal ArticleDOI
TL;DR: In this article, a comprehensive study of phonon lifetimes and thermal conductivity for 33 zincblende- and wurtzite compounds using linearized phonon Boltzmann equation and first-principles anharmonic phonon calculations is presented.
Abstract: A collaboration of researchers from Japan and France present a comprehensive study of phonon lifetimes and thermal conductivity for 33 zincblende- and wurtzite compounds using linearized phonon Boltzmann equation and first-principles anharmonic phonon calculations. The software that the authors created for this study will be released as an open source package and should be of help in the search of new materials for thermoelectric applications.

Journal ArticleDOI
TL;DR: The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes.
Abstract: High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g(-1) at 1.0 and 5.0 A g(-1) (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems.

Journal ArticleDOI
TL;DR: The encouraging safety and clinical efficacy of nivolumab in patients with platinum-resistant ovarian cancer indicate the merit of additional large-scale investigations (UMIN Clinical Trials Registry UMIN000005714).
Abstract: Purpose Programmed death-1 (PD-1), a coinhibitory immune signal receptor expressed in T cells, binds to PD-1 ligand and regulates antitumor immunity. Nivolumab is an anti–PD-1 antibody that blocks PD-1 signaling. We assessed the safety and antitumor activity of nivolumab in patients with platinum-resistant ovarian cancer. Patients and Methods Twenty patients with platinum-resistant ovarian cancer were treated with an intravenous infusion of nivolumab every 2 weeks at a dose of 1 or 3 mg/kg (constituting two 10-patient cohorts) from October 21, 2011. This phase II trial defined the primary end point as the best overall response. Patients received up to six cycles (four doses per cycle) of nivolumab treatment or received doses until disease progression occurred. Twenty nivolumab-treated patients were evaluated at the end of the trial on December 7, 2014. Results Grade 3 or 4 treatment-related adverse events occurred in eight (40%) of 20 patients. Two patients had severe adverse events. In the 20 patients in...

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the proton-probes of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the response of the H2O/O2 “spatially aggregating substance,” which has the potential to alter the structure of the molecule and provide clues to the “building blocks” of DNA.
Abstract: Lung Wa Chung,† W. M. C. Sameera,‡ Romain Ramozzi,‡ Alister J. Page, Miho Hatanaka,‡ Galina P. Petrova, Travis V. Harris,‡,⊥ Xin Li, Zhuofeng Ke, Fengyi Liu, Hai-Bei Li, Lina Ding, and Keiji Morokuma*,‡ †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, China School of Ocean, Shandong University, Weihai 264209, China School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China

Journal ArticleDOI
TL;DR: In this article, a stage-1 KC 8 compound is formed by electrochemical reduction at the potential approaching to K + /K standard potential which is lower than that of Li + /Li.

Journal ArticleDOI
21 Jul 2015-BMJ
TL;DR: Hitual consumption of sugar sweetened beverages was associated with a greater incidence of type 2 diabetes, independently of adiposity, and both artificially sweetened alcoholic beverages and fruit juice were unlikely to be healthy alternatives to sugarsweetened beverages for the prevention of type 1 diabetes.
Abstract: ObjeCtives To examine the prospective associations between consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice with type 2 diabetes before and after adjustment for adiposity, and to estimate the population attributable fraction for type 2 diabetes from consumption of sugar sweetened beverages in the United States and United Kingdom. Design Systematic review and meta-analysis. Data sOurC es anD eligibility

Journal ArticleDOI
TL;DR: In this article, the features and present status of SiC power devices are briefly described, and several important aspects of the material science and device physics of the SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed.
Abstract: Power semiconductor devices are key components in power conversion systems. Silicon carbide (SiC) has received increasing attention as a wide-bandgap semiconductor suitable for high-voltage and low-loss power devices. Through recent progress in the crystal growth and process technology of SiC, the production of medium-voltage (600?1700 V) SiC Schottky barrier diodes (SBDs) and power metal?oxide?semiconductor field-effect transistors (MOSFETs) has started. However, basic understanding of the material properties, defect electronics, and the reliability of SiC devices is still poor. In this review paper, the features and present status of SiC power devices are briefly described. Then, several important aspects of the material science and device physics of SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed. Fundamental issues regarding SiC SBDs and power MOSFETs are also discussed.

Journal ArticleDOI
TL;DR: Author(s): Varki, Ajit; Cummings, Richard D; Aebi, Markus; Packer, Nicole H; Seeberger, Peter H; Esko, Jeffrey D; Stanley, Pamela; Hart, Gerald; Darvill, Alan; Kinoshita, Taroh; Prestegard, James J; Schnaar, Ronald L; Freeze, Hudson H; Marth, Jamey D; Bertozzi, Carolyn R.
Abstract: Author(s): Varki, Ajit; Cummings, Richard D; Aebi, Markus; Packer, Nicole H; Seeberger, Peter H; Esko, Jeffrey D; Stanley, Pamela; Hart, Gerald; Darvill, Alan; Kinoshita, Taroh; Prestegard, James J; Schnaar, Ronald L; Freeze, Hudson H; Marth, Jamey D; Bertozzi, Carolyn R; Etzler, Marilynn E; Frank, Martin; Vliegenthart, Johannes Fg; Lutteke, Thomas; Perez, Serge; Bolton, Evan; Rudd, Pauline; Paulson, James; Kanehisa, Minoru; Toukach, Philip; Aoki-Kinoshita, Kiyoko F; Dell, Anne; Narimatsu, Hisashi; York, William; Taniguchi, Naoyuki; Kornfeld, Stuart

Journal ArticleDOI
TL;DR: A. H. Wallace, J. L. Carruthers, S. L€ ohr, Y. Khosroshahi, Z. Chari, E. Della-Torre, L. Frulloni, H.
Abstract: A. Khosroshahi, Z. S. Wallace, J. L. Crowe, T. Akamizu, A. Azumi, M. N. Carruthers, S. T. Chari, E. Della-Torre, L. Frulloni, H. Goto, P. A. Hart, T. Kamisawa, S. Kawa, M. Kawano, M. H. Kim, Y. Kodama, K. Kubota, M. M. Lerch, M. L€ ohr, Y. Masaki, S. Matsui, T. Mimori, S. Nakamura, T. Nakazawa, H. Ohara, K. Okazaki, J. H. Ryu, T. Saeki, N. Schleinitz, A. Shimatsu, T. Shimosegawa, H. Takahashi, M. Takahira, A. Tanaka, M. Topazian, H. Umehara, G. J. Webster, T. E. Witzig, M. Yamamoto, W. Zhang, T. Chiba, and J. H. Stone


Journal ArticleDOI
TL;DR: A thermally activated delayed fluorescence material for organic light-emitting diodes is shown, which realizes both approximately 100% photoluminescence quantum yield and Approximately 100% up-conversion of the triplet to singlet excited state.
Abstract: Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state. The material contains electron-donating diphenylaminocarbazole and electron-accepting triphenyltriazine moieties. The typical trade-off between effective emission and triplet-to-singlet up-conversion is overcome by fine-tuning the highest occupied molecular orbital and lowest unoccupied molecular orbital distributions. The nearly zero singlet–triplet energy gap, smaller than the thermal energy at room temperature, results in an organic light-emitting diode with external quantum efficiency of 29.6%. An external quantum efficiency of 41.5% is obtained when using an out-coupling sheet. The external quantum efficiency is 30.7% even at a high luminance of 3,000 cd m−2. Organic light-emitting diodes promise a more environment-friendly future for light sources, but many use rare metals. Here, the authors present an approach that achieves external quantum efficiency over 40% by realising 100% up-conversion from triplet to singlet excitons and thus 100% radiative emission.

Journal ArticleDOI
22 May 2015-Science
TL;DR: It is found that environmental factors are incomplete predictors of community structure and associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns.
Abstract: Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.

Journal ArticleDOI
TL;DR: This review summarizes current progress in the understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Abstract: Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole ...

Journal ArticleDOI
TL;DR: The World Federation for Ultrasound in Medicine and Biology has produced these guidelines for the use of elastography techniques in liver disease, aimed at assessing the usefulness ofElastography in the management of liver diseases.
Abstract: The breast section of these Guidelines and Recommendations for Elastography produced under the auspices of the World Federation of Ultrasound in Medicine and Biology (WFUMB) assesses the clinically used applications of all forms of elastography used in breast imaging. The literature on various breast elastography techniques is reviewed, and recommendations are made on evidence-based results. Practical advice is given on how to perform and interpret breast elastography for optimal results, with emphasis placed on avoiding pitfalls. Artifacts are reviewed, and the clinical utility of some artifacts is discussed. Both strain and shear wave techniques have been shown to be highly accurate in characterizing breast lesions as benign or malignant. The relationship between the various techniques is discussed, and recommended interpretation based on a BI-RADS-like malignancy probability scale is provided. This document is intended to be used as a reference and to guide clinical users in a practical way.

Journal ArticleDOI
TL;DR: The fundamental physics and the associated terminology underlying elasticity imaging technologies are described to ensure that the terminology and descriptions are broadly compatible across the WFUMB and EFSUMB sets of guidelines on elastography.
Abstract: Conventional diagnostic ultrasound images of the anatomy (as opposed to blood flow) reveal differences in the acoustic properties of soft tissues (mainly echogenicity but also, to some extent, attenuation), whereas ultrasound-based elasticity images are able to reveal the differences in the elastic properties of soft tissues (e.g., elasticity and viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathologic lesions. Typically, all elasticity measurement and imaging methods introduce a mechanical excitation and monitor the resulting tissue response. Some of the most widely available commercial elasticity imaging methods are 'quasi-static' and use external tissue compression to generate images of the resulting tissue strain (or deformation). In addition, many manufacturers now provide shear wave imaging and measurement methods, which deliver stiffness images based upon the shear wave propagation speed. The goal of this review is to describe the fundamental physics and the associated terminology underlying these technologies. We have included a questions and answers section, an extensive appendix, and a glossary of terms in this manuscript. We have also endeavored to ensure that the terminology and descriptions, although not identical, are broadly compatible across the WFUMB and EFSUMB sets of guidelines on elastography (Bamber et al. 2013; Cosgrove et al. 2013).

Journal ArticleDOI
TL;DR: The English version of the JSCCR Guidelines 2014 can be used as a guide to obtaining informed consent from patients and choosing the method of treatment for each patient, and can, therefore, be used for treating colorectal cancer in clinical practice.
Abstract: Colorectal cancer is a major cause of death in Japan, where it accounts for the largest number of deaths from malignant neoplasms among women and the third largest number among men. Many new methods of treatment have been developed during recent decades. The Japanese Society for Cancer of the Colon and Rectum Guidelines 2014 for treatment of colorectal cancer (JSCCR Guidelines 2014) have been prepared as standard treatment strategies for colorectal cancer, to eliminate treatment disparities among institutions, to eliminate unnecessary treatment and insufficient treatment, and to deepen mutual understanding among health-care professionals and patients by making these guidelines available to the general public. These guidelines have been prepared as a result of consensuses reached by the JSCCR Guideline Committee on the basis of careful review of evidence retrieved by literature searches and taking into consideration the medical health insurance system and actual clinical practice in Japan. They can, therefore, be used as a guide for treating colorectal cancer in clinical practice. More specifically, they can be used as a guide to obtaining informed consent from patients and choosing the method of treatment for each patient. As a result of the discussions of the Guideline Committee, controversial issues were selected as clinical questions, and recommendations were made. Each recommendation is accompanied by a classification of the evidence and a classification of recommendation categories, on the basis of consensus reached by Guideline Committee members. Here we present the English version of the JSCCR Guidelines 2014.

Journal ArticleDOI
TL;DR: In this article, the authors delineate the entire picture of genetic alterations and affected pathways in these glioma types, with sensitive detection of driver genes Grade II and III gliomas comprise three distinct subtypes characterized by discrete sets of mutations and distinct clinical behaviors, suggesting that there is functional interplay between the mutations that drive clonal selection.
Abstract: Grade II and III gliomas are generally slowly progressing brain cancers, many of which eventually transform into more aggressive tumors Despite recent findings of frequent mutations in IDH1 and other genes, knowledge about their pathogenesis is still incomplete Here, combining two large sets of high-throughput sequencing data, we delineate the entire picture of genetic alterations and affected pathways in these glioma types, with sensitive detection of driver genes Grade II and III gliomas comprise three distinct subtypes characterized by discrete sets of mutations and distinct clinical behaviors Mutations showed significant positive and negative correlations and a chronological hierarchy, as inferred from different allelic burdens among coexisting mutations, suggesting that there is functional interplay between the mutations that drive clonal selection Extensive serial and multi-regional sampling analyses further supported this finding and also identified a high degree of temporal and spatial heterogeneity generated during tumor expansion and relapse, which is likely shaped by the complex but ordered processes of multiple clonal selection and evolutionary events

Journal ArticleDOI
TL;DR: The atomic model of an Aβ(1–42) amyloid fibril, from solid-state NMR (ssNMR) data, is presented, providing insight into the A β(1-42)-selective self-replicating amyloids-propagation machinery in early-stage Alzheimer's disease.
Abstract: Aβ(1–42) is the most pathogenic amyloid-β species in Alzheimer's disease (AD). The solid-state NMR–based atomic model of an Aβ(1–42) fibril elucidates the mechanism of fibril formation and propagation in AD and other amyloid diseases.

Journal ArticleDOI
28 Aug 2015-Science
TL;DR: It is reported that microbiota-induced Tregs express the nuclear hormone receptor RORγt and differentiate along a pathway that also leads to TH17 cells, and acts as a key factor in balancing immune responses at mucosal surfaces.
Abstract: Changes to the symbiotic microbiota early in life, or the absence of it, can lead to exacerbated type 2 immunity and allergic inflammations. Although it is unclear how the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory T helper 17 (TH17) cells and regulatory T cells (Tregs) in the intestine. Here, we report that microbiota-induced Tregs express the nuclear hormone receptor RORγt and differentiate along a pathway that also leads to TH17 cells. In the absence of RORγt+ Tregs, TH2-driven defense against helminths is more efficient, whereas TH2-associated pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the induction of type 3 RORγt+ Tregs and TH17 cells and acts as a key factor in balancing immune responses at mucosal surfaces.