scispace - formally typeset
Search or ask a question
Institution

Kyoto University

EducationKyoto, Japan
About: Kyoto University is a education organization based out in Kyoto, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 85837 authors who have published 217215 publications receiving 6526826 citations. The organization is also known as: Kyōto University & Kyōto daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone, which suggests interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.
Abstract: The liver and exocrine pancreas share a common structure, with functioning units (hepatic plates and pancreatic acini) connected to the ductal tree. Here we show that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone. Cre-based lineage tracing showed that adult intestinal cells, hepatocytes and pancreatic acinar cells are supplied physiologically from Sox9-expressing progenitors. Combination of lineage analysis and hepatic injury experiments showed involvement of Sox9-positive precursors in liver regeneration. Embryonic pancreatic Sox9-expressing cells differentiate into all types of mature cells, but their capacity for endocrine differentiation diminishes shortly after birth, when endocrine cells detach from the epithelial lining of the ducts and form the islets of Langerhans. We observed a developmental switch in the hepatic progenitor cell type from Sox9-negative to Sox9-positive progenitors as the biliary tree develops. These results suggest interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.

772 citations

Journal ArticleDOI
TL;DR: Different methylated states of H3 Lys9 are directed by specific histone methyltransferases to "mark" distinct domains of silent chromatin.

772 citations

Journal ArticleDOI
TL;DR: Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action, which can cause susceptibility to specific complications and also foster arteriosclerosis.
Abstract: Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action. Its pathogenesis involves both genetic and environmental factors. The long-term persistence of metabolic disorders can cause susceptibility to specific complications and also foster arteriosclerosis. Diabetes mellitus is associated with a broad range of clinical presentations, from being asymptomatic to ketoacidosis or coma, depending on the degree of metabolic disorder.

772 citations

Journal ArticleDOI
01 Oct 2000
TL;DR: An adaptive extension of the kinematic controller for the dynamic model of a nonholonomic mobile robot with unknown parameters is proposed, and a torque adaptive controller is derived by using the k cinematic controller.
Abstract: A mobile robot is one of the well-known nonholonomic systems. The integration of a kinematic controller and a torque controller for the dynamic model of a nonholonomic mobile robot has been presented (Fierro and Lewis, 1995). In this paper, an adaptive extension of the controller is proposed. If an adaptive tracking controller for the kinematic model with unknown parameters exists, an adaptive tracking controller for the dynamic model with unknown parameters can be designed by using an adaptive backstepping approach. A design example for a mobile robot with two actuated wheels is provided. In this design, a new kinematic adaptive controller is proposed, then a torque adaptive controller is derived by using the kinematic controller.

771 citations

Journal ArticleDOI
TL;DR: It is shown that a soluble form of VEGFR-3 is a potent inhibitor of Vascular endothelial growth factor (VEGF)-C and VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal.
Abstract: The lymphatic vasculature transports extravasated tissue fluid, macromolecules and cells back into the blood circulation. Recent reports have focused on the molecular mechanisms regulating the lymphatic vessels. Vascular endothelial growth factor (VEGF)-C and VEGF-D have been shown to stimulate lymphangiogenesis and their receptor, VEGFR-3, has been linked to human hereditary lymphedema. Here we show that a soluble form of VEGFR-3 is a potent inhibitor of VEGF-C/VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal. Transgenic mice develop a lymphedema-like phenotype characterized by swelling of feet, edema and dermal fibrosis. They survive the neonatal period in spite of a virtually complete lack of lymphatic vessels in several tissues, and later show regeneration of the lymphatic vasculature, indicating that induction of lymphatic regeneration may also be possible in humans.

769 citations


Authors

Showing all 86225 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Karl Deisseroth160556101487
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Ben Zhong Tang1492007116294
Takeo Kanade147799103237
Yuji Matsuzawa143836116711
Tasuku Honjo14171288428
Kenneth M. Yamada13944672136
Y. B. Hsiung138125894278
Shuh Narumiya13759570183
Kevin P. Campbell13752160854
Junji Tojo13587884615
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

99% related

Osaka University
185.6K papers, 5.1M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022679
20218,533
20208,740
20198,050
20187,932