scispace - formally typeset
Search or ask a question
Institution

Kyoto University

EducationKyoto, Japan
About: Kyoto University is a education organization based out in Kyoto, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 85837 authors who have published 217215 publications receiving 6526826 citations. The organization is also known as: Kyōto University & Kyōto daigaku.
Topics: Catalysis, Population, Gene, Transplantation, Ion


Papers
More filters
Journal ArticleDOI
25 Jun 1998-Nature
TL;DR: It is shown that LIM-kinase 1 (LIMK-1), a serine/threonine kinase containing LIM and PDZ domains, phosphorylates cofilin at Ser’3, both in vitro and in vivo, which indicates that LIMK- 1 participates in Rac-mediated actin cytoskeletal reorganization, probably by phosphoryLating co Filin.
Abstract: Rac is a small GTPase of the Rho family that mediates stimulus-induced actin cytoskeletal reorganization to generate lamellipodia Little is known about the signalling pathways that link Rac activation to changes in actin filament dynamics Cofilin is known to be a potent regulator of actin filament dynamics, and its ability to bind and depolymerize actin is abolished by phosphorylation of serine residue at 3; however, the kinases responsible for this phosphorylation have not been identified Here we show that LIM-kinase 1 (LIMK-1), a serine/threonine kinase containing LIM and PDZ domains, phosphorylates cofilin at Ser 3, both in vitro and in vivo When expressed in cultured cells, LIMK-1 induces actin reorganization and reverses cofilin-induced actin depolymerization Expression of an inactive form of LIMK-1 suppresses lamellipodium formation induced by Rac or insulin Furthermore, insulin and an active form of Rac increase the activity of LIMK-1 Taken together, our results indicate that LIMK-1 participates in Rac-mediated actin cytoskeletal reorganization, probably by phosphorylating cofilin

1,240 citations

Journal ArticleDOI
TL;DR: What makes a protein immunogenic, particularly for strong T cell–mediated immunity?
Abstract: What makes a protein immunogenic, particularly for strong T cell–mediated immunity? To a first approximation, this determination seems to be made by dendritic cells (DCs). Immature DCs, as in skin ([1][1])([2][2])([3][3])([4][4]), lung ([5][5]), blood ([6][6])([7][7]), and spleen ([7][7])([8][8

1,235 citations

Journal ArticleDOI
26 Oct 2000-Nature
TL;DR: Three different crystal structures of the extracellular ligand-binding region of mGluR1 are determined—in a complex with glutamate and in two unliganded forms, implying that glutamate binding stabilizes both the ‘active’ dimer and the ’closed’ protomer in dynamic equilibrium.
Abstract: The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1--in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose 'active' and 'resting' conformations are modulated through the dimeric interface by a packed alpha-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an 'open' or 'closed' conformation. The structures imply that glutamate binding stabilizes both the 'active' dimer and the 'closed' protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.

1,235 citations

Journal ArticleDOI
TL;DR: Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance calculated from the galvanostatic charge-discharge curves at a current density of 2 A·g(-1).
Abstract: Core–shell structured ZIF-8@ZIF-67 crystals are well-designed and prepared through a seed-mediated growth method. After thermal treatment of ZIF-8@ZIF-67 crystals, we obtain selectively functionalized nanoporous hybrid carbon materials consisting of nitrogen-doped carbon (NC) as the cores and highly graphitic carbon (GC) as the shells. This is the first example of the integration of NC and GC in one particle at the nanometer level. Electrochemical data strongly demonstrate that this nanoporous hybrid carbon material integrates the advantageous properties of the individual NC and GC, exhibiting a distinguished specific capacitance (270 F·g–1) calculated from the galvanostatic charge–discharge curves at a current density of 2 A·g–1. Our study not only bridges diverse carbon-based materials with infinite metal–organic frameworks but also opens a new avenue for artificially designed nanoarchitectures with target functionalities.

1,233 citations

Journal ArticleDOI
TL;DR: In this article, the cosmological evolution of the hard X-ray luminosity function (HXLF) of active galactic nuclei (AGNs) in the 2-10 keV luminosity range of 1041.5-1046.5 ergs s-1 was investigated.
Abstract: We investigate the cosmological evolution of the hard X-ray luminosity function (HXLF) of active galactic nuclei (AGNs) in the 2-10 keV luminosity range of 1041.5-1046.5 ergs s-1 as a function of redshift up to 3. From a combination of surveys conducted at photon energies above 2 keV with HEAO 1, ASCA, and Chandra, we construct a highly complete (>96%) sample consisting of 247 AGNs over the wide flux range of 10-10 to 3.8 × 10-15 ergs cm-2 s-1 (2-10 keV). For our purpose, we develop an extensive method of calculating the intrinsic (before absorption) HXLF and the absorption (NH) function. This utilizes the maximum likelihood method, fully correcting for observational biases with consideration of the X-ray spectrum of each source. We find that (1) the fraction of X-ray absorbed AGNs decreases with the intrinsic luminosity and (2) the evolution of the HXLF of all AGNs (including both type I and type II AGNs) is best described with a luminosity-dependent density evolution (LDDE) where the cutoff redshift increases with the luminosity. Our results directly constrain the evolution of AGNs that produce a major part of the hard X-ray background, thus solving its origin quantitatively. A combination of the HXLF and the NH function enables us to construct a purely observation-based population synthesis model. We present basic consequences of this model and discuss the contribution of Compton-thick AGNs to the rest of the hard X-ray background.

1,216 citations


Authors

Showing all 86225 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Karl Deisseroth160556101487
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Ben Zhong Tang1492007116294
Takeo Kanade147799103237
Yuji Matsuzawa143836116711
Tasuku Honjo14171288428
Kenneth M. Yamada13944672136
Y. B. Hsiung138125894278
Shuh Narumiya13759570183
Kevin P. Campbell13752160854
Junji Tojo13587884615
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

99% related

Osaka University
185.6K papers, 5.1M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022679
20218,533
20208,740
20198,050
20187,932