scispace - formally typeset
Search or ask a question
Institution

Kyoto University

EducationKyoto, Japan
About: Kyoto University is a education organization based out in Kyoto, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 85837 authors who have published 217215 publications receiving 6526826 citations. The organization is also known as: Kyōto University & Kyōto daigaku.


Papers
More filters
Book
Jun Kigami1
22 Sep 2009
TL;DR: In this paper, the authors provide a self-contained introduction to fractals, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on selfsimilar sets.
Abstract: This book covers analysis on fractals, a developing area of mathematics which focuses on the dynamical aspects of fractals, such as heat diffusion on fractals and the vibration of a material with fractal structure. The book provides a self-contained introduction to the subject, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on self-similar sets. Requiring only a basic knowledge of advanced analysis, general topology and measure theory, this book will be of value to graduate students and researchers in analysis and probability theory. It will also be useful as a supplementary text for graduate courses covering fractals.

812 citations

Journal ArticleDOI
TL;DR: A hitherto unidentified docking motif in MAPKs is revealed that is used in common for recognition of their activators, substrates and regulators and increases the efficiency of the enzymatic reactions.
Abstract: Mitogen-activated protein kinases (MAPKs) are specifically phosphorylated and activated by the MAPK kinases, phosphorylate various targets such as MAPK-activated protein kinases and transcription factors, and are inactivated by specific phosphatases. Recently, docking interactions via the non-catalytic regions of MAPKs have been suggested to be important in regulating these reactions. Here we identify docking sites in MAPKs and in MAPK-interacting enzymes. A docking domain in extracellular-signal-regulated kinase (ERK), a MAPK, serves as a common site for binding to the MAPK kinase MEK1, the MAPK-activated protein kinase MNK1 and the MAPK phosphatase MKP3. Two aspartic acids in this domain are essential for docking, one of which is mutated in the sevenmaker mutant of Drosophila ERK/Rolled. A corresponding domain in the MAPKs p38 and JNK/SAPK also serves as a common docking site for their MEKs, MAPK-activated protein kinases and MKPs. These docking interactions increase the efficiency of the enzymatic reactions. These findings reveal a hitherto unidentified docking motif in MAPKs that is used in common for recognition of their activators, substrates and regulators.

812 citations

Journal ArticleDOI
TL;DR: The mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients are examined and the future avenues of their use in melanoma and other cancers are explored.
Abstract: Melanoma, a skin cancer associated with high mortality rates, is highly radio- and chemotherapy resistant but can also be very immunogenic. These circumstances have led to a recent surge in research into therapies aiming to boost anti-tumor immune responses in cancer patients. Among these immunotherapies, neutralizing antibodies targeting the immune checkpoints T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are being hailed as particularly successful. These antibodies have resulted in dramatic improvements in disease outcome and are now clinically approved in many countries. However, the majority of advanced stage melanoma patients do not respond or will relapse, and the hunt for the "magic bullet" to treat the disease continues. This review examines the mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients and further explores the future avenues of their use in melanoma and other cancers.

810 citations

Journal ArticleDOI
TL;DR: It is concluded that the essential condition for glass and glass-ceramic to bond to bone is the formation of the surface apatite layer in the body environment but it is not essential to contain apatites within the material.
Abstract: Glass-ceramic A-W, containing crystalline apatite and wollastonite in a MgO-CaO-SiO2 glassy matrix shows high bioactivity as well as high mechanical strength, but other ceramics containing the same kinds of crystalline phases in different glassy matrices do not show the same bioactivity. In order to investigate the bone-bonding mechanism of this type of glass-ceramic, surface structural changes of the glass-ceramics after exposure to simulated body fluid were analyzed with various techniques. A solution with ion concentrations which are almost equal to those of the human blood plasma was used as the simulated body fluid, instead of Tris-buffer solution hitherto used. For analyzing the surface structural changes, thin-film x-ray diffraction was used in addition to conventional techniques. It was found that a bioactive glass-ceramic forms a Ca, P-rich layer on its surface in the fluid but nonbioactive ones do not, and that the Ca, P-rich layer consists of carbonate-containing hydroxyapatite of small crystallites and/or defective structure. These findings were common to those of Bioglass-type glasses. So, we conclude that the essential condition for glass and glass-ceramic to bond to bone is the formation of the surface apatite layer in the body environment but it is not essential to contain apatite within the material. Bioactivity of glass and glass-ceramic can be evaluated in vitro by examining the formation of the surface apatite layer in the simulated body fluid described above.

809 citations

Journal ArticleDOI
TL;DR: The authors describe the type of signals that occur in various environments and the modeling of the propagation parameters, which are divided into outdoor environments, indoor environments, and radio penetration from outdoor to indoor environments.
Abstract: The authors describe the type of signals that occur in various environments and the modeling of the propagation parameters. Models are essentially of two classes. The first class consists of parametric statistical models that on average describe the phenomenon within a given error. They are simple to use, but relatively coarse. In the last few years a second class of environment-specific models has been introduced. These models are of a more deterministic nature, characterizing a specific street, building, etc. They are necessarily more time consuming to use, but are also more revealing concerning physical details and hopefully more accurate. Some key parameters and the measurement of them are discussed and then the different wireless environments are treated. The latter topic is divided into outdoor environments, indoor environments, and radio penetration from outdoor to indoor environments. >

808 citations


Authors

Showing all 86225 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Karl Deisseroth160556101487
Kenji Kangawa1531117110059
Takashi Taniguchi1522141110658
Ben Zhong Tang1492007116294
Takeo Kanade147799103237
Yuji Matsuzawa143836116711
Tasuku Honjo14171288428
Kenneth M. Yamada13944672136
Y. B. Hsiung138125894278
Shuh Narumiya13759570183
Kevin P. Campbell13752160854
Junji Tojo13587884615
Network Information
Related Institutions (5)
University of Tokyo
337.5K papers, 10.1M citations

99% related

Nagoya University
128.2K papers, 3.2M citations

99% related

Osaka University
185.6K papers, 5.1M citations

97% related

University of Tsukuba
79.4K papers, 1.9M citations

97% related

Hokkaido University
115.4K papers, 2.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022679
20218,533
20208,740
20198,050
20187,932