scispace - formally typeset
Search or ask a question

Showing papers by "Kyungpook National University published in 2019"


Journal ArticleDOI
23 Oct 2019-Nature
TL;DR: The results suggest that an endogenous ‘lactate clock’ in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis, and represents an opportunity to improve the understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.
Abstract: The Warburg effect, which originally described increased production of lactate in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, polarization of macrophages and activation of T cells. This phenomenon is intimately linked to several diseases including neoplasia, sepsis and autoimmune diseases1,2. Lactate, which is converted from pyruvate in tumour cells, is widely known as an energy source and metabolic by-product. However, its non-metabolic functions in physiology and disease remain unknown. Here we show that lactate-derived lactylation of histone lysine residues serves as an epigenetic modification that directly stimulates gene transcription from chromatin. We identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce the production of lactate by glycolysis, and this acts as a precursor that stimulates histone lactylation. Using M1 macrophages that have been exposed to bacteria as a model system, we show that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, increased histone lactylation induces homeostatic genes that are involved in wound healing, including Arg1. Collectively, our results suggest that an endogenous 'lactate clock' in bacterially challenged M1 macrophages turns on gene expression to promote homeostasis. Histone lactylation thus represents an opportunity to improve our understanding of the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.

968 citations


Journal ArticleDOI
TL;DR: It is confirmed that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista, and suggested primer sets for DNA sequences from environmental samples that are effective for each clade are provided.
Abstract: This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many ...

750 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations


Journal ArticleDOI
TL;DR: This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials.

490 citations


Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2265 moreInstitutions (153)
TL;DR: Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented and constraints are placed on various two Higgs doublet models.
Abstract: Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton–proton collision data set recorded with the CMS detector in 2016 at $\sqrt{s}=13\,\text {Te}\text {V} $ , corresponding to an integrated luminosity of 35.9 ${\,\text {fb}^{-1}} $ . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a $\mathrm {W}$ or $\mathrm {Z}$ boson, or a top quark-antiquark pair) and the following decay modes: $\mathrm {H} \rightarrow \gamma \gamma $ , $\mathrm {Z}\mathrm {Z}$ , $\mathrm {W}\mathrm {W}$ , $\mathrm {\tau }\mathrm {\tau }$ , $\mathrm {b} \mathrm {b} $ , and $\mathrm {\mu }\mathrm {\mu }$ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be $\mu =1.17\pm 0.10$ , assuming a Higgs boson mass of $125.09\,\text {Ge}\text {V} $ . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.

451 citations


Journal ArticleDOI
TL;DR: Synthetic methods for morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity are introduced to provide insights into these methodologies.
Abstract: Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth-abundant transition metals have emerged as promising candidates for efficient water-splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology-controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.

437 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations


Proceedings ArticleDOI
Matej Kristan1, Amanda Berg2, Linyu Zheng3, Litu Rout4  +176 moreInstitutions (43)
01 Oct 2019
TL;DR: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative; results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOTST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website.

393 citations


Journal ArticleDOI
TL;DR: In this paper, a tumour-on-a-chip model featuring patient-derived glioblastoma cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue was used to identify patient-specific resistance to standard chemoradiotherapy.
Abstract: Patient-specific ex vivo models of human tumours that recapitulate the pathological characteristics and complex ecology of native tumours could help determine the most appropriate cancer treatment for individual patients. Here, we show that bioprinted reconstituted glioblastoma tumours consisting of patient-derived tumour cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue in a compartmentalized cancer–stroma concentric-ring structure that sustains a radial oxygen gradient, recapitulate the structural, biochemical and biophysical properties of the native tumours. We also show that the glioblastoma-on-a-chip reproduces clinically observed patient-specific resistances to treatment with concurrent chemoradiation and temozolomide, and that the model can be used to determine drug combinations associated with superior tumour killing. The patient-specific tumour-on-a-chip model might be useful for the identification of effective treatments for glioblastoma patients resistant to the standard first-line treatment. A tumour-on-a-chip model featuring patient-derived glioblastoma cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue can be used to identify patient-specific resistance to standard chemoradiotherapy.

350 citations


Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2298 moreInstitutions (160)
TL;DR: In this article, a search for invisible decays of a Higgs boson via vector boson fusion is performed using proton-proton collision data collected with the CMS detector at the LHC in 2016 at a center-of-mass energy root s = 13 TeV, corresponding to an integrated luminosity of 35.9fb(-1).

Journal ArticleDOI
TL;DR: A comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial, can be found in this paper.
Abstract: Energy and environmental issues presently attract a great deal of scientific attention. Recently, two-dimensional MXenes and MXene-based nanomaterials have attracted increasing interest because of their unique properties (e.g., remarkable safety, a very large interlayer spacing, environmental flexibility, a large surface area, and thermal conductivity). In 2011, multilayered MXenes (Ti3C2Tx, a new family of two-dimensional (2D) materials) produced by etching an A layer from a MAX phase of Ti3AlC2, were first described by researchers at Drexel University. The term “MXene” was coined to distinguish this new family of 2D materials from graphene, and applies to both the original MAX phases and MXenes fabricated from them. We present a comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial. Future research needs are discussed briefly with current challenges that must be overcome before we completely understand the extraordinary properties of MXene and MXene-based nanomaterials.

Journal ArticleDOI
TL;DR: The current understanding of the intimate molecular conversation between microglia and astrocytes is discussed and its potential implications in CNS health and disease are outlined.
Abstract: Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.

Journal ArticleDOI
TL;DR: The structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control are introduced and suggested to inspire the development of new therapeutic agents in academia and industry.
Abstract: A variety of organisms, such as bacteria, fungi, and plants, produce secondary metabolites, also known as natural products. Natural products have been a prolific source and an inspiration for numerous medical agents with widely divergent chemical structures and biological activities, including antimicrobial, immunosuppressive, anticancer, and anti-inflammatory activities, many of which have been developed as treatments and have potential therapeutic applications for human diseases. Aside from natural products, the recent development of recombinant DNA technology has sparked the development of a wide array of biopharmaceutical products, such as recombinant proteins, offering significant advances in treating a broad spectrum of medical illnesses and conditions. Herein, we will introduce the structures and diverse biological activities of natural products and recombinant proteins that have been exploited as valuable molecules in medicine, agriculture and insect control. In addition, we will explore past and ongoing efforts along with achievements in the development of robust and promising microorganisms as cell factories to produce biologically active molecules. Furthermore, we will review multi-disciplinary and comprehensive engineering approaches directed at improving yields of microbial production of natural products and proteins and generating novel molecules. Throughout this article, we will suggest ways in which microbial-derived biologically active molecular entities and their analogs could continue to inspire the development of new therapeutic agents in academia and industry.

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of deep neural network concepts in background subtraction for novices and experts in order to analyze this success and to provide further directions.

Journal ArticleDOI
TL;DR: In this article, a comprehensive assessment of recent studies on the removal of various contaminants of emerging concern (CECs) with different physicochemical properties by various MOF-NAs under various water quality conditions (e.g., pH, background ions/ionic strength, natural organic matter, and temperature).

Journal ArticleDOI
E. Kou, Phillip Urquijo1, Wolfgang Altmannshofer2, F. Beaujean3  +558 moreInstitutions (140)
TL;DR: The Belle II detector as mentioned in this paper is a state-of-the-art detector for heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas.
Abstract: The Belle II detector will provide a major step forward in precision heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas. The sensitivity to a large number of key observables can be improved by about an order of magnitude compared to the current measurements, and up to two orders in very clean search measurements. This increase in statistical precision arises not only due to the increased luminosity, but also from improved detector efficiency and precision for many channels. Many of the most interesting observables tend to have very small theoretical uncertainties that will therefore not limit the physics reach. This book has presented many new ideas for measurements, both to elucidate the nature of current anomalies seen in flavor, and to search for new phenomena in a plethora of observables that will become accessible with the Belle II dataset. The simulation used for the studiesinthis book was state ofthe artat the time, though weare learning a lot more about the experiment during the commissioning period. The detector is in operation, and working spectacularly well.

Journal ArticleDOI
TL;DR: Application of exogenous NO alleviates the negative stress effects in plants and improves antioxidant activity in most plant species, and S-nitrosylation and tyrosine nitration are two NO-mediated posttranslational modification.

Journal ArticleDOI
TL;DR: In this paper, the enzymatic degradation of polyethylene terephthalate (PET) has been studied for a variety of environmental and health problems; however, the degradation of PET can be a promising solution.
Abstract: Widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems; thus, the enzymatic degradation of PET can be a promising solution. Although PE...

Journal ArticleDOI
TL;DR: Considering the fast kinetics, high adsorption properties, easy magnetic separation, and recyclability for multiple reuses, the CZF-biochar composite has potential for the removal of BPA, SMX, and potentially other emerging organic contaminants from contaminated soil and water.

Journal ArticleDOI
TL;DR: A survey on the use of ensemble strategies in POAs is provided and an overview of similar methods in the literature such as hyper-heuristics, island models, adaptive operator selection, etc. are provided and compare them with the ensemble Strategies in the context of POAs.
Abstract: In population-based optimization algorithms (POAs), given an optimization problem, the quality of the solutions depends heavily on the selection of algorithms, strategies and associated parameter combinations, constraint handling method, local search method, surrogate model, niching method, etc. In the literature, there exist several alternatives corresponding to each aspect of configuring a population-based algorithm such as one-point/two-points/uniform crossover operators, tournament/ranking/stochastic uniform sampling selection methods, Gaussian/Levy/Cauchy mutation operators, clearing/crowding/sharing based niching algorithms, adaptive penalty/epsilon/superiority of feasible constraint handling approaches, associated parameter values and so on. In POA literature, No Free Lunch (NFL) theorem has been well-documented and therefore, to effectively solve a given optimization problem, an appropriate configuration is necessary. But, the trial and error approach for the appropriate configuration may be impractical because at different stages of evolution, the most appropriate configurations could be different depending on the characteristics of the current search region for a given problem. Recently, the concept of incorporating ensemble strategies into POAs has become popular so that the process of configuring an optimization algorithm can benefit from both the availability of diverse approaches at different stages and alleviate the computationally intensive offline tuning. In addition, algorithmic components of different advantages could support one another during the optimization process, such that the ensemble of them could potentially result in a versatile POA. This paper provides a survey on the use of ensemble strategies in POAs. In addition, we also provide an overview of similar methods in the literature such as hyper-heuristics, island models, adaptive operator selection, etc. and compare them with the ensemble strategies in the context of POAs.

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2319 moreInstitutions (159)
TL;DR: In this article, the performance of missing transverse momentum (Tmiss) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center of mass energy of 13 TeV, collected at the CERN LHC in 2016.
Abstract: The performance of missing transverse momentum (Tmiss) reconstruction algorithms for the CMS experiment is presented, using proton-proton collisions at a center-of-mass energy of 13 TeV, collected at the CERN LHC in 2016. The data sample corresponds to an integrated luminosity of 35.9 fb-1. The results include measurements of the scale and resolution of Tmiss, and detailed studies of events identified with anomalous Tmiss. The performance is presented of a Tmiss reconstruction algorithm that mitigates the effects of multiple proton-proton interactions, using the "pileup per particle identification" method. The performance is shown of an algorithm used to estimate the compatibility of the reconstructed Tmiss with the hypothesis that it originates from resolution effects.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the current progress in the field of porous carbons, especially N-enriched carbons obtained from the carbonization of MOFs with or without additional N-containing compounds.

Journal ArticleDOI
TL;DR: The revised guideline recommends the more intensive BP lowering in high risk patients including the elderly population and single pill combination drugs have multiple benefits, including maximizing reduction of BP, minimizing adverse effects, increasing adherence, and preventing cardiovascular disease (CVD) and target organ damage.
Abstract: The standardized techniques of blood pressure (BP) measurement in the clinic are emphasized and it is recommended to replace the mercury sphygmomanometer by a non-mercury sphygmomanometer. Out-of-office BP measurement using home BP monitoring (HBPM) or ambulatory BP monitoring (ABPM) and even automated office BP (AOBP) are recommended to correctly measure the patient’s genuine BP. Hypertension (HTN) treatment should be individualized based on cardiovascular (CV) risk and the level of BP. Based on the recent clinical study data proving benefits of intensive BP lowering in the high risk patients, the revised guideline recommends the more intensive BP lowering in high risk patients including the elderly population. Lifestyle modifications, mostly low salt diet and weight reduction, are strongly recommended in the population with elevated BP and prehypertension and all hypertensive patients. In patients with BP higher than 160/100 mmHg or more than 20/10 mmHg above the target BP, two drugs can be prescribed in combination to maximize the antihypertensive effect and to achieve rapid BP control. Especially, single pill combination drugs have multiple benefits, including maximizing reduction of BP, minimizing adverse effects, increasing adherence, and preventing cardiovascular disease (CVD) and target organ damage.

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2272 moreInstitutions (160)
TL;DR: A search for Higgs boson pair production using the combined results from four final states: bbγγ, bbττ, bbbb, and bbVV, where V represents a W or Z boson, is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions.
Abstract: This Letter describes a search for Higgs boson pair production using the combined results from four final states: bbγγ, bbττ, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at s=13 TeV, corresponding to an integrated luminosity of 35.9 fb-1. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250–3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

Journal ArticleDOI
TL;DR: In this article, the La2O3 added in (80-x) B2O 3:10SiO 2:10 CaO:xLa 2O3 glass (where x = 10, 15, 20, 25 and 30mol%) were investigated for x-ray shielding, physical and optical properties.

Journal ArticleDOI
TL;DR: This study has provided strong evidence that circulating exosomal ncRNAs (miRNA‐21 and lncRNA‐ATB) are novel prognostic markers and therapeutic targets for HCC.
Abstract: Exosomal noncoding RNAs (ncRNAs) have unique expression profiles reflecting the characteristics of a tumor, and their role in tumor progression and metastasis is emerging. However, the significance of circulating exosomal ncRNAs in the prognosis of hepatocellular carcinoma (HCC) remains to be elucidated. We therefore determined the prognostic significance of circulating exosomal ncRNAs (miRNA-21 and lncRNA-ATB) for human HCC. This prospective study enrolled 79 HCC patients between October 2014 and September 2015. Exosomes were extracted from serum samples using the ExoQuick Exosome Precipitation Solution. To validate the isolation of the exosomes from serum, immunoblotting for exosome markers and characterization of nanoparticle using NanoSight were performed. NcRNAs were isolated from exosomes using the miRNeasy serum/plasma micro kit. Both circulating exosomal miRNA-21 and lncRNA-ATB were related to TNM stage and other prognostic factors, including the T stage and portal vein thrombosis. Multivariate analysis using the Cox regression test identified that both higher miRNA-21 and higher lncRNA-ATB were independent predictors of mortality and disease progression, along with larger tumor size and higher C-reactive protein (all p < 0.05). The overall survival and progression-free survival were significantly lower in patients with higher circulating levels of exosomal miRNA-21 (≥0.09) and lncRNA-ATB (≥0.0016) (log-rank test: p < 0.05). In conclusion, our study has provided strong evidence that circulating exosomal ncRNAs (miRNA-21 and lncRNA-ATB) are novel prognostic markers and therapeutic targets for HCC.

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: The third volume of the FCC Conceptual Design Report as discussed by the authors is devoted to the hadron collider FCC-hh, and summarizes the physics discovery opportunities, presents the FCC-HH accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.

Journal ArticleDOI
TL;DR: In this paper, the authors report on the current state of LLP searches at the Large Hadron Collider (LHC) at CERN and chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High Luminosity LHC.
Abstract: Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments --- as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER --- to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the High-Luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity "dark showers", highlighting opportunities for expanding the LHC reach for these signals.

Journal ArticleDOI
TL;DR: In this paper, an innovative, facile, low-cost and one-pot hydrothermal carbonization method was developed for the synthesis of bright fluorescence nitrogen-doped carbon dots (NCDs) using Piper betle (Betel) leaf as a carbon and nitrogen precursor.