scispace - formally typeset
Search or ask a question

Showing papers by "Kyungpook National University published in 2020"


Journal ArticleDOI
25 Sep 2020-Science
TL;DR: Two fluorinated isomeric analogs of the well-known hole-transporting material Spiro-OMeTAD are developed and used as HTMs in PSCs and feature high efficiency, open-circuit voltage, and stability of perovskite solar cells.
Abstract: Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to achieve the commercial viability of next-generation photovoltaics. Considering the benefits of fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are developed and used as HTMs in PSCs. The structure-property relationship induced by constitutional isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along with long-term stability in wet conditions without encapsulation (87% efficiency retention after 500 hours). We also achieve an efficiency of 22.31% in the large-area cell.

996 citations


Journal ArticleDOI
TL;DR: Anosmia and ageusia seem to be part of important symptoms and clues for the diagnosis of COVID-19, particularly in the early stage of the disease, particularly among females and younger individuals.
Abstract: Initially, acute loss of smell (anosmia) and taste (ageusia) was not considered important symptoms for coronavirus disease 2019 (COVID-19). To determine the prevalence of these symptoms and to evaluate their diagnostic significance, we (approximately 150 physicians of the Daegu Medical Association) prospectively collected data of cases of anosmia and ageusia from March 8, 2020, via telephone interview among 3,191 patients in Daegu, Korea. Acute anosmia or ageusia was observed in 15.3% (488/3,191) patients in the early stage of COVID-19 and in 15.7% (367/2,342) patients with asymptomatic-to-mild disease severity. Their prevalence was significantly more common among females and younger individuals (P = 0.01 and P < 0.001, respectively). Most patients with anosmia or ageusia recovered within 3 weeks. The median time to recovery was 7 days for both symptoms. Anosmia and ageusia seem to be part of important symptoms and clues for the diagnosis of COVID-19, particularly in the early stage of the disease.

378 citations


Journal ArticleDOI
TL;DR: A review will be a summa of the key features of novel coronavirus (nCoV), the virus causing disease 2019 and the present epidemic situation worldwide up to April 20, 2020.

338 citations


Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2248 moreInstitutions (155)
TL;DR: For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
Abstract: New sets of CMS underlying-event parameters (“tunes”) are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell–Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

265 citations


Journal ArticleDOI
01 Sep 2020-Fuel
TL;DR: In this article, the authors used a simple hydrothermal method from biowaste, dwarf banana peel (HN-CDs) for the detection of metal ion (Fe3+ ion) in aqueous solution by the fluorometric method.

233 citations


Journal ArticleDOI
G. Caria1, Phillip Urquijo1, Iki Adachi2, Iki Adachi3  +228 moreInstitutions (77)
TL;DR: This work constitutes the most precise measurements of R(D) and R (D^{*}) performed to date as well as the first result for R( D) based on a semileptonic tagging method.
Abstract: The experimental results on the ratios of branching fractions $\mathcal{R}(D) = {\cal B}(\bar{B} \to D \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D \ell^- \bar{ u}_{\ell})$ and $\mathcal{R}(D^*) = {\cal B}(\bar{B} \to D^* \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D^* \ell^- \bar{ u}_{\ell})$, where $\ell$ denotes an electron or a muon, show a long-standing discrepancy with the Standard Model predictions, and might hint to a violation of lepton flavor universality. We report a new simultaneous measurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$, based on a data sample containing $772 \times 10^6$ $B\bar{B}$ events recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. In this analysis the tag-side $B$ meson is reconstructed in a semileptonic decay mode and the signal-side $\tau$ is reconstructed in a purely leptonic decay. The measured values are $\mathcal{R}(D)= 0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within $0.2$, $1.1$ and $0.8$ standard deviations for $\mathcal{R}(D)$, $\mathcal{R}(D^*)$ and their combination, respectively. This work constitutes the most precise measurements of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ performed to date as well as the first result for $\mathcal{R}(D)$ based on a semileptonic tagging method.

228 citations


Journal ArticleDOI
Juliette Alimena1, James Baker Beacham2, Martino Borsato3, Yangyang Cheng4  +213 moreInstitutions (105)
TL;DR: In this paper, the authors present a survey of the current state of LLP searches at the Large Hadron Collider (LHC) and chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC.
Abstract: Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.

218 citations


Journal ArticleDOI
15 Apr 2020-Nature
TL;DR: The approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices, and reveals a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters.
Abstract: Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices. Photoemission electron microscopy images of trap states in halide peroskites, spatially correlated with their structural and compositional factors, may help in managing power losses in optoelectronic applications.

213 citations


Journal ArticleDOI
TL;DR: In this article, the authors report biochemical and structural analyses of various MDHs to reveal amino acids influencing the specific activity and susceptibility to substrate inhibition, and achieve industrial-level SA production.
Abstract: Succinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Malate dehydrogenase (MDH) is one of the key enzymes for SA production, but has not been well characterized. Here we report biochemical and structural analyses of various MDHs and development of hyper-SA producing M. succiniciproducens by introducing the best MDH. Corynebacterium glutamicum MDH (CgMDH) shows the highest specific activity and least substrate inhibition, whereas M. succiniciproducens MDH (MsMDH) shows low specific activity at physiological pH and strong uncompetitive inhibition toward oxaloacetate (ki of 67.4 and 588.9 μM for MsMDH and CgMDH, respectively). Structural comparison of the two MDHs reveals a key residue influencing the specific activity and susceptibility to substrate inhibition. A high-inoculum fed-batch fermentation of the final strain expressing cgmdh produces 134.25 g L−1 of SA with the maximum productivity of 21.3 g L−1 h−1, demonstrating the importance of enzyme optimization in strain development. Malate dehydrogenase (MDH) is one of the key enzymes for succinic acid (SA) bioproduction. Here, the authors report biochemical and structural analyses of various MDHs to reveal amino acids influencing the specific activity and susceptibility to substrate inhibition, and achieve industrial-level SA production.

198 citations


Journal ArticleDOI
TL;DR: A new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor-based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors.
Abstract: Accurate temperature field measurement provides critical information in many scientific problems. Herein, a new paradigm for highly sensitive, flexible, negative temperature coefficient (NTC) thermistor-based artificial skin is reported, with the highest temperature sensing ability reported to date among previously reported NTC thermistors. This artificial skin is achieved through the development of a novel monolithic laser-induced reductive sintering scheme and unique monolithic structures. The unique seamless monolithic structure simultaneously integrates two different components (a metal electrode and metal oxide sensing channel) from the same material at ambient pressure, which cannot be achieved by conventional heterogeneous integration through multiple, complex steps of photolithography or vacuum deposition. In addition to superior performance, electronic skin with high temperature sensitivity can be fabricated on heat-sensitive polymer substrates due to the low-temperature requirements of the process. As a proof of concept, temperature-sensitive artificial skin is tested with conformally attachable physiological temperature sensor arrays in the measurement of the temperatures of exhaled breath for the early detection of pathogenic progression in the respiratory system. The proposed highly sensitive flexible temperature sensor and monolithic selective laser reductive sintering are expected to greatly contribute to the development of essential components in various emerging research fields, including soft robotics and healthcare systems.

192 citations


Journal ArticleDOI
TL;DR: Increased testing capacity over 100 tests per day and prevention of cross-infection between testees in the waiting space are the major advantages, while protection of staff from the outdoor atmosphere is challenging.
Abstract: As the coronavirus disease 2019 (COVID-19) outbreak is ongoing, the number of individuals to be tested for COVID-19 is rapidly increasing. For safe and efficient screening for COVID-19, drive-through (DT) screening centers have been designed and implemented in Korea. Herein, we present the overall concept, advantages, and limitations of the COVID-19 DT screening centers. The steps of the DT centers include registration, examination, specimen collection, and instructions. The entire service takes about 10 minutes for one testee without leaving his or her cars. Increased testing capacity over 100 tests per day and prevention of cross-infection between testees in the waiting space are the major advantages, while protection of staff from the outdoor atmosphere is challenging. It could be implemented in other countries to cope with the global COVID-19 outbreak and transformed according to their own situations.

Journal ArticleDOI
TL;DR: A set of 57 real-world Constrained Optimization Problems are described and presented as a benchmark suite to validate the COPs and reveal that the selected problems are indeed challenging to these algorithms, which have been shown to solve many synthetic benchmark problems easily.
Abstract: Real-world optimization problems have been comparatively difficult to solve due to the complex nature of the objective function with a substantial number of constraints. To deal with such problems, several metaheuristics as well as constraint handling approaches have been suggested. To validate the effectiveness and strength, performance of a newly designed approach should be benchmarked by using some complex real-world problems, instead of only the toy problems with synthetic objective functions, mostly arising from the area of numerical analysis. A list of standard real-life problems appears to be the need of the time for benchmarking new algorithms in an efficient and unbiased manner. In this study, a set of 57 real-world Constrained Optimization Problems (COPs) are described and presented as a benchmark suite to validate the COPs. These problems are shown to capture a wide range of difficulties and challenges that arise from the real life optimization scenarios. Three state-of-the-art constrained optimization methods are exhaustively tested on these problems to analyze their hardness. The experimental outcomes reveal that the selected problems are indeed challenging to these algorithms, which have been shown to solve many synthetic benchmark problems easily.

Journal ArticleDOI
TL;DR: To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, this review of a detailed updated molecular mechanism of VC encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
Abstract: Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.

Proceedings ArticleDOI
01 Feb 2020
TL;DR: This paper proposes a holistic deep learning-based activity recognition architecture, a convolutional neural network-long short-term memory network (CNN-LSTM), which improves the predictive accuracy of human activities from raw data but also reduces the complexity of the model while eliminating the need for advanced feature engineering.
Abstract: To understand human behavior and intrinsically anticipate human intentions, research into human activity recognition HAR) using sensors in wearable and handheld devices has intensified. The ability for a system to use as few resources as possible to recognize a user's activity from raw data is what many researchers are striving for. In this paper, we propose a holistic deep learning-based activity recognition architecture, a convolutional neural network-long short-term memory network (CNN-LSTM). This CNN-LSTM approach not only improves the predictive accuracy of human activities from raw data but also reduces the complexity of the model while eliminating the need for advanced feature engineering. The CNN-LSTM network is both spatially and temporally deep. Our proposed model achieves a 99% accuracy on the iSPL dataset, an internal dataset, and a 92 % accuracy on the UCI HAR public dataset. We also compared its performance against other approaches. It competes favorably against other deep neural network (DNN) architectures that have been proposed in the past and against machine learning models that rely on manually engineered feature datasets.

Journal ArticleDOI
TL;DR: These findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase Tc in vdW ferromagnets by theory-guided material discovery.
Abstract: In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material–based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, Fe4GeTe2, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase Tc in vdW ferromagnets by theory-guided material discovery.

Journal ArticleDOI
TL;DR: The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a...
Abstract: The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a ...

Journal ArticleDOI
E. Kou, Phillip Urquijo1, Wolfgang Altmannshofer2, F. Beaujean3  +558 moreInstitutions (137)
TL;DR: In the original version of this manuscript, an error was introduced on pp352. '2.7nb:1.6nb' has been corrected to ''2.4nb: 1.3nb'' in the current online and printed version.
Abstract: In the original version of this manuscript, an error was introduced on pp352. '2.7nb:1.6nb' has been corrected to '2.4nb:1.3nb' in the current online and printed version. doi:10.1093/ptep/ptz106.

Journal ArticleDOI
TL;DR: In this paper, the enzyme TurboID is split into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition, and reconstituted TurboID catalyzes spatially restricted biotinylation.
Abstract: Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein–protein interaction or membrane–membrane apposition. At endoplasmic reticulum–mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum–mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.

Journal ArticleDOI
TL;DR: Nivolumab treatment resulted in clinically meaningful long-term improvements in OS in patients with previously treated G/GEJ cancer in a randomized, double-blind, placebo-controlled, phase 3 trial.
Abstract: Nivolumab showed improvement in overall survival (OS) in ATTRACTION-2, the first phase 3 study in patients with gastric/gastroesophageal junction (G/GEJ) cancer treated with ≥ 2 chemotherapy regimens. The 2-year follow-up results of ATTRACTION-2 are presented herein. ATTRACTION-2 was a randomized, double-blind, placebo-controlled, phase 3 trial (49 sites; Japan, South Korea, and Taiwan). The median (min–max) follow-up period was 27.3 (24.1–36.3) months. The primary endpoint was OS. A subanalysis of OS was performed based on best overall response and tumor-programmed death ligand-1 (PD-L1) expression status. Overall, 493 of 601 screened patients were randomized (2:1) to receive nivolumab (330) or placebo (163). OS (median [95% confidence interval; CI]) was significantly longer in the nivolumab group (5.26 [4.60–6.37] vs 4.14 [3.42–4.86] months in placebo group) at the 2-year follow-up (hazard ratio [95% CI], 0.62 [0.51–0.76]; P < 0.0001). A higher OS rate was observed in the nivolumab vs placebo group at 1 (27.3% vs 11.6%) and 2 years (10.6% vs 3.2%). The OS benefit was observed regardless of tumor PD-L1 expression. Among patients with a complete or partial response (CR or PR) in the nivolumab group, the median OS (95% CI) was 26.6 (21.65—not applicable) months; the OS rates at 1 and 2 years were 87.1% and 61.3%, respectively. No new safety signals were identified. Nivolumab treatment resulted in clinically meaningful long-term improvements in OS in patients with previously treated G/GEJ cancer. The long-term survival benefit of nivolumab was most evident in patients with a CR or PR.

Journal ArticleDOI
TL;DR: A staging system has been developed to revise the 1994 ARCO classification for ONFH by an expert panel-based Delphi survey and ARCO approved and recommends this revised system as a universal staging of ONFH.
Abstract: Background The Association Research Circulation Osseous (ARCO) presents the 2019 revised staging system of osteonecrosis of the femoral head (ONFH) based on the 1994 ARCO classification. Methods In October 2018, ARCO established a task force to revise the staging system of ONFH. The task force involved 29 experts who used a web-based survey for international collaboration. Content validity ratios for each answer were calculated to identify the levels of agreement. For the rating queries, a consensus was defined when more than 70% of the panel members scored a 4 or 5 rating on a 5-point scale. Results Response rates were 93.1%-100%, and through the 4-round Delphi study, the 1994 ARCO classification for ONFH was successfully revised. The final consensus resulted in the following 4-staged system: stage I—X-ray is normal, but either magnetic resonance imaging or bone scan is positive; stage II—X-ray is abnormal (subtle signs of osteosclerosis, focal osteoporosis, or cystic change in the femoral head) but without any evidence of subchondral fracture, fracture in the necrotic portion, or flattening of the femoral head; stage III—fracture in the subchondral or necrotic zone as seen on X-ray or computed tomography scans. This stage is further divided into stage IIIA (early, femoral head depression ≤2 mm) and stage IIIB (late, femoral head depression >2 mm); and stage IV—X-ray evidence of osteoarthritis with accompanying joint space narrowing, acetabular changes, and/or joint destruction. This revised staging system does not incorporate the previous subclassification or quantitation parameters, but the panels agreed on the future development of a separate grading system for predicting disease progression. Conclusion A staging system has been developed to revise the 1994 ARCO classification for ONFH by an expert panel-based Delphi survey. ARCO approved and recommends this revised system as a universal staging of ONFH.

Journal ArticleDOI
TL;DR: The root response to drought stress in rice is reviewed to provide readers with information of use for their own research and breeding program for tolerance to drought Stress in rice.
Abstract: The current unpredictable climate changes are causing frequent and severe droughts. Such circumstances emphasize the need to understand the response of plants to drought stress, especially in rice, one of the most important grain crops. Knowledge of the drought stress response components is especially important in plant roots, the major organ for the absorption of water and nutrients from the soil. Thus, this article reviews the root response to drought stress in rice. It is presented to provide readers with information of use for their own research and breeding program for tolerance to drought stress in rice.

Journal ArticleDOI
TL;DR: A novel blockchain enabled authentication key agreement protocol for IoMT environment, called BAKMP-IoMT, which provides secure key management between implantable medical devices and personal servers and betweenpersonal servers and cloud servers and needs low communication and computational costs as compared to other schemes.
Abstract: The Internet of Medical Things (IoMT) is a kind of connected infrastructure of smart medical devices along with software applications, health systems and services. These medical devices and applications are connected to healthcare systems through the Internet. The Wi-Fi enabled devices facilitate machine-to-machine communication and link to the cloud platforms for data storage. IoMT has the ability to make accurate diagnoses, with fewer mistakes and lower costs of care. IoMT with smartphone applications permits the patients to exchange their health related confidential and private information to the healthcare experts (i.e., doctors) for the better control of diseases, and also for tracking and preventing chronic illnesses. Due to insecure communication among the entities involved in IoMT, an attacker can tamper with the confidential and private health related information for example an attacker can not only intercept the messages, but can also modify, delete or insert malicious messages during communication. To deal this sensitive issue, we design a novel blockchain enabled authentication key agreement protocol for IoMT environment, called BAKMP-IoMT. BAKMP-IoMT provides secure key management between implantable medical devices and personal servers and between personal servers and cloud servers. The legitimate users can also access the healthcare data from the cloud servers in a secure way. The entire healthcare data is stored in a blockchain maintained by the cloud servers. A detailed formal security including the security verification of BAKMP-IoMT using the widely-accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) tool is performed to demonstrate its resilience against the different types of possible attack. The comparison of BAKMP-IoMT with relevant existing schemes is conducted which identifies that the proposed system furnishes better security and functionality, and also needs low communication and computational costs as compared to other schemes. Finally, the simulation of BAKMP-IoMT is conducted to demonstrate its impact on the performance parameters.

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2296 moreInstitutions (171)
TL;DR: In this article, a measurement of the mass of the Higgs boson in the diphoton decay channel is presented, based on 35.9 fb − 1 of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13TeV.

Journal ArticleDOI
TL;DR: In this article, a critical review of all the experimental, theoretical and numerical investigations on the particle-size-dependent effective thermal conductivity of the nanofluids is presented.

Journal ArticleDOI
TL;DR: The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Abstract: Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress. We isolated, screened and identified thermotolerant B. cereus SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in GmHSP expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive GmLAX3 and GmAKT2 were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress. The current findings suggest that B. cereus SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.

Journal ArticleDOI
TL;DR: A need to use several pathogens in nano biomedical studies, and a need to search nanoparticles with high efficiency against a broad spectrum of pathogens, is indicated.

Journal ArticleDOI
TL;DR: This review focuses on the contemporary global MP research with respect to research opportunities and related challenges of MP for the soil and terrestrial ecosystem from a Bangladesh perspective.

Journal ArticleDOI
TL;DR: These findings serve as proof of concept of synergistic antitumour activity with the combination of an Fc-optimised anti-HER2 agent (margetuximab) along with anti-PD-1 checkpoint blockade (pembrolizumab).
Abstract: Summary Background Margetuximab, a novel, investigational, Fc-engineered, anti-HER2 monoclonal antibody, is designed to more effectively potentiate innate immunity than trastuzumab. We aimed to evaluate the safety, tolerability, and antitumour activity of margetuximab plus pembrolizumab (an anti-PD-1 monoclonal antibody) in previously treated patients with HER2-positive gastro-oesophageal adenocarcinoma. Methods CP-MGAH22–05 was a single-arm, open-label, phase 1b–2 dose-escalation and cohort expansion study done at 11 academic centres in the USA and Canada and 15 centres in southeast Asia (Korea, Taiwan, and Singapore) that enrolled men and women aged 18 years or older with histologically proven, unresectable, locally advanced or metastatic, HER2-positive, PD-L1-unselected gastro-oesophageal adenocarcinoma, with an Eastern Cooperative Oncology Group performance status of 0 or 1, who had progressed after at least one previous line of therapy with trastuzumab plus chemotherapy in the locally advanced unresectable or metastatic setting. In the dose-escalation phase, nine patients were treated: three received margetuximab 10 mg/kg intravenously plus pembrolizumab 200 mg intravenously every 3 weeks and six received the recommended phase 2 dose of margetuximab 15 mg/kg plus pembrolizumab 200 mg intravenously every 3 weeks. An additional 86 patients were enrolled in the phase 2 cohort expansion and received the recommended phase 2 dose. The primary endpoints were safety and tolerability, assessed in the safety population (patients who received at least one dose of either margetuximab or pembrolizumab) and the objective response rate as assessed by the investigator according to both Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, in the response-evaluable population (patients with measurable disease at baseline and who received the recommended phase 2 dose of margetuximab and pembrolizumab). This trial is registered with ClinicalTrials.gov , NCT02689284 . Recruitment for the trial has completed and follow-up is ongoing. Findings Between Feb 11, 2016, and Oct 2, 2018, 95 patients were enrolled. Median follow-up was 19·9 months (IQR 10·7–23·1). The combination therapy showed acceptable safety and tolerability; there were no dose-limiting toxicities in the dose-escalation phase. The most common grade 3–4 treatment-related adverse events were anaemia (four [4%]) and infusion-related reactions (three [3%]). Serious treatment-related adverse events were reported in nine (9%) patients. No treatment-related deaths were reported. Objective responses were observed in 17 (18·48%; 95% CI 11·15–27·93) of 92 evaluable patients. Interpretation These findings serve as proof of concept of synergistic antitumour activity with the combination of an Fc-optimised anti-HER2 agent (margetuximab) along with anti-PD-1 checkpoint blockade (pembrolizumab). Funding MacroGenics.

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive literature review of MOF-based membranes in water purification, and suggest future research trends by identifying insufficiencies of current knowledge.

Journal ArticleDOI
TL;DR: Standard IBD treatments including biologics should continue at present through the pandemic, especially in children who generally have more severe IBD course on one hand, and milder SARS-CoV-2 infection on the other.
Abstract: INTRODUCTION: With the current coronavirus disease 2019 (COVID-19) pandemic, concerns have been raised about the risk to children with inflammatory bowel diseases (IBD). We aimed to collate global experience and provide provisional guidance for managing paediatric IBD (PIBD) in the era of COVID-19. METHODS: An electronic reporting system of children with IBD infected with SARS-CoV-2 has been circulated among 102 PIBD centres affiliated with the Porto and Interest-group of ESPGHAN. A survey has been completed by major PIBD centres in China and South-Korea to explore management during the pandemic. A third survey collected current practice of PIBD treatment. Finally, guidance points for practice have been formulated and voted upon by 37 PIBD authors and Porto group members. RESULTS: Eight PIBD children had COVID-19 globally, all with mild infection without needing hospitalization despite treatment with immunomodulators and/or biologics. No cases have been reported in China and South Korea but biologic treatment has been delayed in 79 children, of whom 17 (22%) had exacerbation of their IBD. Among the Porto group members, face-to-face appointments were often replaced by remote consultations but almost all did not change current IBD treatment. Ten guidance points for clinicians caring for PIBD patients in epidemic areas have been endorsed with consensus rate of 92% to 100%. CONCLUSIONS: Preliminary data for PIBD patients during COVID-19 outbreak are reassuring. Standard IBD treatments including biologics should continue at present through the pandemic, especially in children who generally have more severe IBD course on one hand, and milder SARS-CoV-2 infection on the other.