scispace - formally typeset
Search or ask a question
Institution

Kyungpook National University

EducationDaegu, South Korea
About: Kyungpook National University is a education organization based out in Daegu, South Korea. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 20497 authors who have published 42107 publications receiving 834608 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: 5-HT regulates white and brown adipose tissue function and treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes, suggesting important roles for adipocyte-derived 5-HT in controlling energy homeostasis.
Abstract: Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

184 citations

Journal ArticleDOI
TL;DR: A novel ternary nanocomposite consisting of ZnO, g-C3N4, and graphene oxide (GO) that provides enhanced photocatalytic performance and stability and the combined heterojunction and synergistic effects of this composite account for the improved photoc atalytic activity.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a regenerated bacterial cellulose (RBC) composites with zinc-oxide nanoparticles (ZnO) were prepared using a new strategy for enhanced biomedical applications of BC.
Abstract: Regenerated bacterial cellulose (RBC) composites with zinc-oxide nanoparticles (ZnO) were prepared using a new strategy for enhanced biomedical applications of BC. Powdered BC was dissolved in N-methylmorpholine-N-oxide, and different concentrations of ZnO nanoparticles were mixed into the BC solution. RBC, RBC-ZnO1 (1 % ZnO) and ZnO-RBC2 (2 % ZnO) nanocomposite films were prepared by casting the solutions through an applicator. FE-SEM images confirmed the structural features and impregnation of the RBC films by nanoparticles. XRD analysis indicated the presence of specific peaks for RBC and ZnO in the composites. The RBC nanocomposites were found to have greatly enhanced thermal, mechanical and biological properties. Specifically, the degradation temperatures were improved from 334 °C for RBC to 339 and 344 °C for RBC-ZnO1 and RBC-ZnO2, respectively. The mechanical strength and Young’s modulus of the composites were also higher than those of pure RBC. The greatly improved antibacterial properties of the RBC-ZnO nanocomposites are the most striking feature of the present study. The bacterial growth inhibition measured for the RBC was zero, but reached up to 34 and 41 mm for RBC-ZnO1 and RBC-ZnO2, respectively. In addition to their antibacterial properties, the RBC-ZnO nanocomposites were found to be nontoxic and biocompatible with impressive cell adhesion capabilities. These RBC-ZnO nanocomposites can be used for different biomedical applications and have the potential for use in bioelectroanalysis.

183 citations

Journal ArticleDOI
R. Chistov, Kazuo Abe, I. Adachi, Hiroaki Aihara1  +162 moreInstitutions (42)
TL;DR: In this article, the authors presented a method to detect the presence of brain tumors in the human brain using PhysRevLett, a Web of Science Record created on 2010-11-05, modified on 2017-05-12.
Abstract: Reference EPFL-ARTICLE-154577doi:10.1103/PhysRevLett.97.162001View record in Web of Science Record created on 2010-11-05, modified on 2017-05-12

183 citations

Journal ArticleDOI
TL;DR: The results suggest that NO-activated p38 kinase activates p53 function in two different ways, transcriptional activation by NFκB and direct phosphorylation of p53 protein, leading to apoptosis of articular chondrocytes.

183 citations


Authors

Showing all 20671 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
David R. Jacobs1651262113892
Yang Yang1642704144071
Yongsun Kim1562588145619
Jongmin Lee1502257134772
Inkyu Park1441767109433
Christopher George Tully1421843111669
Teruki Kamon1422034115633
Manfred Paulini1411791110930
Kazuhiko Hara1411956107697
Luca Lista1402044110645
Dong-Chul Son138137098686
Christoph Paus1371585100801
Frank Filthaut1351684103590
Andreas Warburton135157897496
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Chonnam National University
36.1K papers, 744.2K citations

97% related

Pusan National University
45K papers, 819.3K citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022317
20213,152
20203,071
20192,763
20182,664