scispace - formally typeset
Search or ask a question

Showing papers by "Kyushu University published in 2013"


Proceedings ArticleDOI
25 Aug 2013
TL;DR: The datasets and ground truth specification are described, the performance evaluation protocols used are details, and the final results are presented along with a brief summary of the participating methods.
Abstract: This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.

1,191 citations


Journal ArticleDOI
TL;DR: In patients with intracerebral hemorrhage, intensive lowering of blood pressure did not result in a significant reduction in the rate of the primary outcome of death or severe disability, and an ordinal analysis of modified Rankin scores indicated improved functional outcomes with intensive loweringof blood pressure.
Abstract: Background Whether rapid lowering of elevated blood pressure would improve the outcome in patients with intracerebral hemorrhage is not known. Methods We randomly assigned 2839 patients who had had a spontaneous intracerebral hemorrhage within the previous 6 hours and who had elevated systolic blood pressure to receive intensive treatment to lower their blood pressure (with a target systolic level of <140 mm Hg within 1 hour) or guideline-recommended treatment (with a target systolic level of <180 mm Hg) with the use of agents of the physician’s choosing. The primary outcome was death or major disability, which was defined as a score of 3 to 6 on the modified Rankin scale (in which a score of 0 indicates no symptoms, a score of 5 indicates severe disability, and a score of 6 indicates death) at 90 days. A prespecified ordinal analysis of the modified Rankin score was also performed. The rate of serious adverse events was compared between the two groups. Results Among the 2794 participants for whom the primary outcome could be determined, 719 of 1382 participants (52.0%) receiving intensive treatment, as compared with 785 of 1412 (55.6%) receiving guideline-recommended treatment, had a primary outcome event (odds ratio with intensive treatment, 0.87; 95% confidence interval [CI], 0.75 to 1.01; P = 0.06). The ordinal analysis showed significantly lower modi fied Rankin scores with intensive treatment (odds ratio for greater disability, 0.87; 95% CI, 0.77 to 1.00; P = 0.04). Mortality was 11.9% in the group receiving intensive treatment and 12.0% in the group receiving guideline-recommended treatment. Nonfatal serious adverse events occurred in 23.3% and 23.6% of the patients in the two groups, respectively. Conclusions In patients with intracerebral hemorrhage, intensive lowering of blood pressure did not result in a significant reduction in the rate of the primary outcome of death or severe disability. An ordinal analysis of modified Rankin scores indi cated improved functional outcomes with intensive lowering of blood pressure. (Funded by the National Health and Medical Research Council of Australia; INTERACT2 ClinicalTrials.gov number, NCT00716079.)

1,105 citations


Journal ArticleDOI
TL;DR: The expert group defined bruxism as a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible and proposed a diagnostic grading system of 'possible', 'probable' and 'definite' sleep or awake bruXism.
Abstract: To date, there is no consensus about the definition and diagnostic grading of bruxism. A written consensus discussion was held among an international group of bruxism experts as to formulate a definition of bruxism and to suggest a grading system for its operationalisation. The expert group defined bruxism as a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible. Bruxism has two distinct circadian manifestations: it can occur during sleep (indicated as sleep bruxism) or during wakefulness (indicated as awake bruxism). For the operationalisation of this definition, the expert group proposes a diagnostic grading system of 'possible', 'probable' and 'definite' sleep or awake bruxism. The proposed definition and grading system are suggested for clinical and research purposes in all relevant dental and medical domains.

821 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era.
Abstract: We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm−2, with a mean of −0.27 Wm−2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm−2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

784 citations


Journal ArticleDOI
TL;DR: This review will discuss lactic acid producers with relation to their fermentation characteristics and metabolism, and introduces inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops.

762 citations


Journal ArticleDOI
Lars G. Fritsche1, Lars G. Fritsche2, Wei Chen2, Wei Chen3  +182 moreInstitutions (60)
TL;DR: A collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry, identifies 19 loci associated at P < 5 × 10−8, which show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis.
Abstract: Age-related macular degeneration (AMD) is a common cause of blindness in older individuals To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry We identified 19 loci associated at P < 5 × 10(-8) These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined Our findings provide new directions for biological, genetic and therapeutic studies of AMD

745 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah  +2942 moreInstitutions (201)
TL;DR: In this paper, the spin and parity quantum numbers of the Higgs boson were studied based on the collision data collected by the ATLAS experiment at the LHC, and the results showed that the standard model spin-parity J(...

608 citations


Journal ArticleDOI
TL;DR: In this paper, an organic host-guest material with efficient persistent RT phosphorescence (RTP) was developed by minimizing the nonradiative deactivation pathway of triplet excitons.
Abstract: Persistent emission with a long lifetime (>1 s) from organic materials can only be observed at a low temperature, because of the significant nonradiative deactivation pathway that occurs at room-temperature (RT). If organic materials with persistent RT emission in air could be developed, they could potentially be utilized for a variety of applications. Here, organic host-guest materials with efficient persistent RT phosphorescence (RTP) are developed by minimizing the nonradiative deactivation pathway of triplet excitons. The nonradiative deactivation pathway is dependent on both nonradiative deactivation of the guest and quenching by diffusional motion of the host. The rigidity and oxygen barrier properties of the steroidal compound used as the host suppressed the quenching, and the aromatic hydrocarbon used as the guest is highly deuterated to minimize nonradiative deactivation of the guest. Red-green-blue persistent RTP with a lifetime >1 s and a quantum yield >10% in air is realized for a pure organic material.

561 citations


Journal ArticleDOI
TL;DR: The results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.
Abstract: The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.

529 citations


Journal ArticleDOI
TL;DR: The findings indicate that “Just-In-Time Quality Assurance” may provide an effort-reducing way to focus on the most risky changes and thus reduce the costs of developing high-quality software.
Abstract: Defect prediction models are a well-known technique for identifying defect-prone files or packages such that practitioners can allocate their quality assurance efforts (e.g., testing and code reviews). However, once the critical files or packages have been identified, developers still need to spend considerable time drilling down to the functions or even code snippets that should be reviewed or tested. This makes the approach too time consuming and impractical for large software systems. Instead, we consider defect prediction models that focus on identifying defect-prone (“risky”) software changes instead of files or packages. We refer to this type of quality assurance activity as “Just-In-Time Quality Assurance,” because developers can review and test these risky changes while they are still fresh in their minds (i.e., at check-in time). To build a change risk model, we use a wide range of factors based on the characteristics of a software change, such as the number of added lines, and developer experience. A large-scale study of six open source and five commercial projects from multiple domains shows that our models can predict whether or not a change will lead to a defect with an average accuracy of 68 percent and an average recall of 64 percent. Furthermore, when considering the effort needed to review changes, we find that using only 20 percent of the effort it would take to inspect all changes, we can identify 35 percent of all defect-inducing changes. Our findings indicate that “Just-In-Time Quality Assurance” may provide an effort-reducing way to focus on the most risky changes and thus reduce the costs of developing high-quality software.

523 citations


Journal ArticleDOI
TL;DR: Monotherapy with S-1 demonstrated noninferiority to gemcitabine in overall survival with good tolerability and presents a convenient oral alternative for locally advanced and metastatic pancreatic cancer.
Abstract: Purpose The present phase III study was designed to investigate the noninferiority of S-1 alone and superiority of gemcitabine plus S-1 compared with gemcitabine alone with respect to overall survival. Patients and Methods The participants were chemotherapy-naive patients with locally advanced or metastatic pancreatic cancer. Patients were randomly assigned to receive only gemcitabine (1,000 mg/m2 on days 1, 8, and 15 of a 28-day cycle), only S-1 (80, 100, or 120 mg/d according to body-surface area on days 1 through 28 of a 42-day cycle), or gemcitabine plus S-1 (gemcitabine 1,000 mg/m2 on days 1 and 8 plus S-1 60, 80, or 100 mg/d according to body-surface area on days 1 through 14 of a 21-day cycle). Results In the total of 834 enrolled patients, median overall survival was 8.8 months in the gemcitabine group, 9.7 months in the S-1 group, and 10.1 months in the gemcitabine plus S-1 group. The noninferiority of S-1 to gemcitabine was demonstrated (hazard ratio, 0.96; 97.5% CI, 0.78 to 1.18; P < .001 for n...

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2942 moreInstitutions (200)
TL;DR: In this article, the production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs were measured using the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2897 moreInstitutions (184)
TL;DR: In this article, the luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented, and a luminosity uncertainty of delta L/L = +/- 3.5 % is obtained.
Abstract: The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2912 moreInstitutions (183)
TL;DR: Two-particle correlations in relative azimuthal angle and pseudorapidity are measured using the ATLAS detector at the LHC and the resultant Δø correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δø modulation for all ΣE(T)(Pb) ranges and particle p(T).
Abstract: Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).

Journal ArticleDOI
TL;DR: In this article, an external quantum efficiency (η EQE ) roll-off model for organic light-emitting diodes (OLEDs) using thermally-activated delayed fluorescence (TADF) of 4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN) was presented.

Journal ArticleDOI
TL;DR: In this paper, a novel way to realize high electroluminescence (EL) efficiency is proposed, which is based on triplet-triplet annihilation and thermally activated delayed fluorescence (TADF).
Abstract: Considerable progress in organic light-emitting diodes (OLEDs) has triggered intensive effort to develop efficient solid-state electroluminescent (EL) materials over the past two decades. Among the many classes of materials being investigated, transition metal complexes are highly attractive because phosphorescent OLEDs containing Ir (III), Pt (II) and Os (II) complexes exhibit very high external quantum efficiencies (ηext). This is because such complexes effectively harvest triplet excitons, so their efficiencies are four times higher than that of conventional fluorescent OLEDs. However, phosphorescent OLEDs containing transition metal-based compounds are rather expensive and unsustainable because they contain rare metals. While OLEDs containing Cu (I) complexes that exhibit high ηext comparable to those with transition metal complexes have been examined as an alternative, the relatively low reliability and high driving voltage of such OLED are fundamental problems. Therefore, a novel way to realize high EL efficiency is required. Although fluorescent OLEDs have been assumed to show limited efficiency because of the branching ratio of singlet and triplet excitons of 1:3, the most recent fluorescence-based OLEDs have overcome this limitation using triplet-triplet annihilation and thermally activated delayed fluorescence (TADF) [1-2]. In particular, we have developed promising blue and green TADF materials [3-4]. However, the design of efficient orange or red emitters is inherently difficult because the photoluminescence (PL) quantum efficiency tends to decrease as the emission wavelength increases according to the energy gap law.

Journal ArticleDOI
10 Oct 2013-Cell
TL;DR: In this article, the authors describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models and show that cells resembling HcPC cells reside within dysplastic lesions that appear several months before HCC nodules.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the short-lived drivers of climate change in current climate models and evaluated the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).
Abstract: . The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58%) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF peaks in most models around 1980, declining thereafter with only weak sensitivity to the Representative Concentration Pathway (RCP). One model, however, projects approximately stable RF levels, while two show increasingly negative RF due to nitrate (not included in most models). Aerosol ERF, in contrast, becomes more negative during 1980 to 2000. During this period, increased Asian emissions appear to have a larger impact on aerosol ERF than European and North American decreases due to their being upwind of the large, relatively pristine Pacific Ocean. There is no clear relationship between historical aerosol ERF and climate sensitivity in the CMIP5 subset of ACCMIP models. In the ACCMIP/CMIP5 models, historical aerosol ERF of about −0.8 to −1.5 W m−2 is most consistent with observed historical warming. Aerosol ERF masks a large portion of greenhouse forcing during the late 20th and early 21st century at the global scale. Regionally, aerosol ERF is so large that net forcing is negative over most industrialized and biomass burning regions through 1980, but remains strongly negative only over east and southeast Asia by 2000. Net forcing is strongly positive by 1980 over most deserts, the Arctic, Australia, and most tropical oceans. Both the magnitude of and area covered by positive forcing expand steadily thereafter.


Journal ArticleDOI
TL;DR: In this article, the authors used modeled concentrations from an ensemble of chemistry?climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change.
Abstract: Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry?climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration?response functions (CRFs), we estimate that, at present, 470?000 (95% confidence interval, 140?000 to 900?000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (?20?000 to 27?000) deaths yr?1 due to ozone and 2200 (?350?000 to 140?000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

Journal ArticleDOI
TL;DR: Current knowledge regarding the regulation and physiologic relevance of Drp1-dependent mitochondrial fission is reviewed: the initial recruitment and assembly ofDrp1 on the mitochondria fission foci, regulation of Dr p1 activity by post-translational modifications, and the role of mitochondrial fissions in cell pathophysiology are reviewed.

Journal ArticleDOI
TL;DR: This study investigated the effect of sarcopenia on short‐ and long‐term outcomes following partial hepatectomy for hepatocellular carcinoma (HCC), and aimed to identify prognostic factors.
Abstract: Background: Sarcopenia was identified recently as a poor prognostic factor in patients with cancer. The present study investigated the effect of sarcopenia on short- and long-term outcomes following partial hepatectomy for hepatocellular carcinoma (HCC), and aimed to identify prognostic factors. Methods: Data were collected retrospectively for all consecutive patients who underwent hepatectomy for HCC with curative intent between January 2004 and December 2009. Patients were assigned to one of two groups according to the presence or absence of sarcopenia, assessed by computed tomographic measurement of muscle mass at the level of the third lumbar vertebra. Clinicopathological, surgical outcome and long-term survival data were analysed. Results: Sarcopenia was present in 75 (40·3 per cent) of 186 patients, and was significantly correlated with female sex, lower body mass index and liver dysfunction, as indicated by abnormal serum albumin levels and indocyanine green retention test at 15min values. In patients with, and without sarcopenia, the 5-year overall survival rate was 71 and 83·7 per cent respectively, and the 5-year recurrence-free survival rate was 13 and 33·2 per cent respectively. Multivariable analysis revealed that reduced skeletal muscle mass was predictive of an unfavourable prognosis. Conclusion: Sarcopenia was predictive of worse overall survival even when adjusted for other known predictors in patients with HCC after partial hepatectomy.

Journal ArticleDOI
TL;DR: This paper presents a novel control system to drive a vehicle efficiently on roads containing varying traffic and signals at intersections for improved fuel economy using a model predictive control method.
Abstract: Energy consumption of a vehicle is greatly influenced by its driving behavior in highly interacting urban traffic. Strategies for fuel efficient driving have been studied and experimented with in various conceptual frameworks. This paper presents a novel control system to drive a vehicle efficiently on roads containing varying traffic and signals at intersections for improved fuel economy. The system measures the relevant information of the current road and traffic, predicts the future states of the preceding vehicle, and computes the optimal vehicle control input using model predictive control (MPC). A typical control objective is chosen to maximize fuel economy by regulating a safe head-distance or cruising at the optimal velocity under bounded driving torque condition. The proposed vehicle control system is evaluated in urban traffic containing thousands of diverse vehicles using the microscopic traffic simulator AIMSUN. Simulation results show that the vehicles controlled by the proposed MPC method significantly improve their fuel economy.

Journal ArticleDOI
TL;DR: In this review, various commercially available, resorbable and non-resorbable membranes with different characteristics are discussed and summarized for their usefulness in preclinical studies and their current efficacy in trials are reviewed.

Journal ArticleDOI
TL;DR: Postoperative outcome of the patients with primary gastric carcinoma in Japan have apparently improved in advanced cases and among the aged population when compared with the archival data.
Abstract: Background The Japanese Gastric Cancer Association (JGCA) started a new nationwide gastric cancer registration in 2008.

Journal ArticleDOI
TL;DR: Combined with the Milan criteria, NLR predicts outcomes after LDLT for HCC via the inflammatory tumor microenvironment and may be a new criterion for LDLT candidates with HCC.

01 Jan 2013
TL;DR: An orange-red organic light-emitting diode containing a heptazine derivative exhibits high performance with a maximum external quantum efficiency and a peak luminance of 17000 ± 1600 cd m⁻² without any light out-coupling enhancement.
Abstract: Considerable progress in organic light-emitting diodes (OLEDs) has triggered intensive effort to develop efficient solid-state electroluminescent (EL) materials over the past two decades. Among the many classes of materials being investigated, transition metal complexes are highly attractive because phosphorescent OLEDs containing Ir (III), Pt (II) and Os (II) complexes exhibit very high external quantum efficiencies (ηext). This is because such complexes effectively harvest triplet excitons, so their efficiencies are four times higher than that of conventional fluorescent OLEDs. However, phosphorescent OLEDs containing transition metal-based compounds are rather expensive and unsustainable because they contain rare metals. While OLEDs containing Cu (I) complexes that exhibit high ηext comparable to those with transition metal complexes have been examined as an alternative, the relatively low reliability and high driving voltage of such OLED are fundamental problems. Therefore, a novel way to realize high EL efficiency is required. Although fluorescent OLEDs have been assumed to show limited efficiency because of the branching ratio of singlet and triplet excitons of 1:3, the most recent fluorescence-based OLEDs have overcome this limitation using triplet-triplet annihilation and thermally activated delayed fluorescence (TADF) [1-2]. In particular, we have developed promising blue and green TADF materials [3-4]. However, the design of efficient orange or red emitters is inherently difficult because the photoluminescence (PL) quantum efficiency tends to decrease as the emission wavelength increases according to the energy gap law.

Journal ArticleDOI
TL;DR: The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria, where regulations by oriC-binding proteins and dnaA gene expression are also conserved.
Abstract: The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.

Journal ArticleDOI
TL;DR: Air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca.
Abstract: Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

Journal ArticleDOI
22 Mar 2013-PLOS ONE
TL;DR: This is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs, and these immortalized cell lines all produce enucleations after induction of differentiation in vitro.
Abstract: Transfusion of red blood cells (RBCs) is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.