scispace - formally typeset
Search or ask a question

Showing papers by "Laboratory of Molecular Biology published in 2002"


Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is shown that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells and the dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain.
Abstract: Parkinson's disease is a widespread condition caused by the loss of midbrain neurons that synthesize the neurotransmitter dopamine. Cells derived from the fetal midbrain can modify the course of the disease, but they are an inadequate source of dopamine-synthesizing neurons because their ability to generate these neurons is unstable. In contrast, embryonic stem (ES) cells proliferate extensively and can generate dopamine neurons. If ES cells are to become the basis for cell therapies, we must develop methods of enriching for the cell of interest and demonstrate that these cells show functions that will assist in treating the disease. Here we show that a highly enriched population of midbrain neural stem cells can be derived from mouse ES cells. The dopamine neurons generated by these stem cells show electrophysiological and behavioural properties expected of neurons from the midbrain. Our results encourage the use of ES cells in cell-replacement therapy for Parkinson's disease.

1,692 citations


Journal ArticleDOI
TL;DR: It is reported that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival.
Abstract: Here we report that synaptic and extrasynaptic NMDA (N-methyl-D-aspartate) receptors have opposite effects on CREB (cAMP response element binding protein) function, gene regulation and neuron survival. Calcium entry through synaptic NMDA receptors induced CREB activity and brain-derived neurotrophic factor (BDNF) gene expression as strongly as did stimulation of L-type calcium channels. In contrast, calcium entry through extrasynaptic NMDA receptors, triggered by bath glutamate exposure or hypoxic/ischemic conditions, activated a general and dominant CREB shut-off pathway that blocked induction of BDNF expression. Synaptic NMDA receptors have anti-apoptotic activity, whereas stimulation of extrasynaptic NMDA receptors caused loss of mitochondrial membrane potential (an early marker for glutamate-induced neuronal damage) and cell death. Specific blockade of extrasynaptic NMDA receptors may effectively prevent neuron loss following stroke and other neuropathological conditions associated with glutamate toxicity.

1,590 citations


Journal ArticleDOI
TL;DR: RyhB provides a mechanism for the cell to down-regulate iron-storage proteins and nonessential ironcontaining proteins when iron is limiting, thus modulating intracellular iron usage to supplement mechanisms for iron uptake directly regulated by Fur.
Abstract: A small RNA, RyhB, was found as part of a genomewide search for novel small RNAs in Escherichia coli. The RyhB 90-nt RNA down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator). RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encoding succinate dehydrogenase, as well as five other genes previously shown to be positively regulated by Fur by an unknown mechanism. These include two other genes encoding enzymes in the tricarboxylic acid cycle, acnA and fumA, two ferritin genes, ftnA and bfr, and a gene for superoxide dismutase, sodB. Fur positive regulation of all these genes is fully reversed in an ryhB mutant. Our results explain the previously observed inability of fur mutants to grow on succinate. RyhB requires the RNA-binding protein, Hfq, for activity. Sequences within RyhB are complementary to regions within each of the target genes, suggesting that RyhB acts as an antisense RNA. In sdhCDAB, the complementary region is at the end of the first gene of the sdhCDAB operon; full-length sdhCDAB message disappears and a truncated message, equivalent in size to the region upstream of the complementarity, is detected when RyhB is expressed. RyhB provides a mechanism for the cell to down-regulate iron-storage proteins and nonessential ironcontaining proteins when iron is limiting, thus modulating intracellular iron usage to supplement mechanisms for iron uptake directly regulated by Fur.

1,096 citations


Journal ArticleDOI
TL;DR: The unique features of the early-appearing GABA signalling systems might help to explain how GABA acts as a developmental signal in the immature brain.
Abstract: In the mature brain, GABA (gamma-aminobutyric acid) functions primarily as an inhibitory neurotransmitter. But it can also act as a trophic factor during nervous system development to influence events such as proliferation, migration, differentiation, synapse maturation and cell death. GABA mediates these processes by the activation of traditional ionotropic and metabotropic receptors, and probably by both synaptic and non-synaptic mechanisms. However, the functional properties of GABA receptor signalling in the immature brain are significantly different from, and in some ways opposite to, those found in the adult brain. The unique features of the early-appearing GABA signalling systems might help to explain how GABA acts as a developmental signal.

1,095 citations


Journal ArticleDOI
26 Sep 2002-Nature
TL;DR: It is shown here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P2 in conjunction with clathrin polymerization, and it is proposed that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature.
Abstract: Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.

1,022 citations


Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is shown that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner, which indicates that AID functions by deaminating dC residues in DNA.
Abstract: After gene rearrangement, immunoglobulin variable genes are diversified by somatic hypermutation or gene conversion, whereas the constant region is altered by class-switch recombination. All three processes depend on activation-induced cytidine deaminase (AID)1,2,3,4,5,6,7, a B-cell-specific protein that has been proposed (because of sequence homology1) to function by RNA editing. But indications that the three gene diversification processes might be initiated by a common type of DNA lesion8,9,10,11, together with the proposal that there is a first phase of hypermutation that targets dC/dG12, suggested to us that AID may function directly at dC/dG pairs. Here we show that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner. Mutation triggered by AID is enhanced by a deficiency of uracil-DNA glycosylase, which indicates that AID functions by deaminating dC residues in DNA. We propose that diversification of functional immunoglobulin genes is triggered by AID-mediated deamination of dC residues in the immunoglobulin locus with the outcome—that is, hypermutation phases 1 and 2, gene conversion or switch recombination—dependent on the way in which the initiating dU/dG lesion is resolved.

900 citations


Journal ArticleDOI
22 Nov 2002-Science
TL;DR: A larger genetic variation in East Asia than in other regions and the pattern of phylogeographic variation suggest an East Asian origin for the domestic dog, ∼15,000 years ago.
Abstract: The origin of the domestic dog from wolves has been established, but the number of founding events, as well as where and when these occurred, is not known. To address these questions, we examined the mitochondrial DNA (mtDNA) sequence variation among 654 domestic dogs representing all major dog populations worldwide. Although our data indicate several maternal origins from wolf, >95% of all sequences belonged to three phylogenetic groups universally represented at similar frequencies, suggesting a common origin from a single gene pool for all dog populations. A larger genetic variation in East Asia than in other regions and the pattern of phylogeographic variation suggest an East Asian origin for the domestic dog, ∼15,000 years ago.

876 citations


Journal ArticleDOI
22 Feb 2002-Cell
TL;DR: This review is an attempt to correlate the structures of the 50S and 30S ribosomal subunits with biochemical and genetic data to identify the gaps and limits in current knowledge of the mechanisms involved in translation.

863 citations


Journal ArticleDOI
TL;DR: Temporally complex, circadian programming of the transcriptome in a peripheral organ is imposed across a wide range of core cellular functions and is dependent on an interaction between intrinsic, tissue-specific factors and extrinsic regulation by the SCN central pacemaker.

789 citations


Journal ArticleDOI
TL;DR: The crystal structure of a bacterial SMC "hinge" region along with EM studies and biochemical experiments on yeast Smc1 and Smc3 proteins show that SMC protamers fold up individually into rod-shaped molecules.

734 citations


Journal ArticleDOI
TL;DR: The results provide strong support for the DNA deamination model for antibody diversification with respect to class-switching as well as hypermutation and suggest that UNG is the major mouse DNA glycosylase responsible for processing the programmed dU/dG lesions within the immunoglobulin locus.

Journal ArticleDOI
01 Oct 2002
TL;DR: Property such as sequence conservation and co-regulation of genes and proteins involved in different types of physical interactions are discussed, given that all proteins consist of their evolutionary units, the domains, all interactions occur between these domains.
Abstract: In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. Thus experimental investigation of protein-protein interactions has been extensive, including recent large-scale screens using mass spectrometry. The role of computational research on protein-protein interactions encompasses not only prediction, but also understanding the nature of the interactions and their three-dimensional structures. I will discuss properties such as sequence conservation and co-regulation of genes and proteins involved in different types of physical interactions. Given that all proteins consist of their evolutionary units, the domains, all interactions occur between these domains. The interactions between domains belonging to different protein families will be the second topic of my talk.

Journal ArticleDOI
TL;DR: The production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation is reported on, with evidence for apoptosis obtained, despite the extensive colocalization of hyperphosphorylated tau protein with activated MAP kinase family members.
Abstract: The identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis According to light microscopy, many nerve cells in brain and spinal cord were strongly immunoreactive for hyperphosphorylated tau According to electron microscopy, abundant filaments made of hyperphosphorylated tau protein were present The majority of filaments resembled the half-twisted ribbons described previously in cases of FTDP-17, with a minority of filaments resembling the paired helical filaments of Alzheimer's disease Sarkosyl-insoluble tau from brains and spinal cords of transgenic mice ran as a hyperphosphorylated 64 kDa band, the same apparent molecular mass as that of the 383 aa tau isoform in the human tauopathies Perchloric acid-soluble tau was also phosphorylated at many sites, with the notable exception of serine 214 In the spinal cord, neurodegeneration was present, as indicated by a 49% reduction in the number of motor neurons No evidence for apoptosis was obtained, despite the extensive colocalization of hyperphosphorylated tau protein with activated MAP kinase family members The latter may be involved in the hyperphosphorylation of tau

Journal ArticleDOI
27 Nov 2002-Cell
TL;DR: In this article, crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at decoding center and compare affinities of equivalent complexes in solution were reported.

Journal ArticleDOI
27 Jun 2002-Nature
TL;DR: Optimize hydrogen bonding to the buried hydroxyprolyl group confers precise discrimination between hydroxylated and unmodified prolyl residues in two functionally independent regions of HIF-1α, providing a new focus for development of therapeutic agents to modulate cellular responses to hypoxia.
Abstract: Hypoxia-inducible factor-1 (HIF-1) is a transcriptional complex that controls cellular and systemic homeostatic responses to oxygen availability. HIF-1 alpha is the oxygen-regulated subunit of HIF-1, an alpha beta heterodimeric complex. HIF-1 alpha is stable in hypoxia, but in the presence of oxygen it is targeted for proteasomal degradation by the ubiquitination complex pVHL, the protein of the von Hippel Lindau (VHL) tumour suppressor gene and a component of an E3 ubiquitin ligase complex. Capture of HIF-1 alpha by pVHL is regulated by hydroxylation of specific prolyl residues in two functionally independent regions of HIF-1 alpha. The crystal structure of a hydroxylated HIF-1 alpha peptide bound to VCB (pVHL, elongins C and B) and solution binding assays reveal a single, conserved hydroxyproline-binding pocket in pVHL. Optimized hydrogen bonding to the buried hydroxyprolyl group confers precise discrimination between hydroxylated and unmodified prolyl residues. This mechanism provides a new focus for development of therapeutic agents to modulate cellular responses to hypoxia.

Journal ArticleDOI
17 May 2002-Cell
TL;DR: The structure of the 200 kDa AP2 "core" complexed with the polyphosphatidylinositol headgroup mimic inositolhexakisphosphate is described and a model for AP2 recruitment and activation is proposed.

Journal ArticleDOI
TL;DR: It is shown thatAPOBEC1 and its homologs APOBEC3C and APOBec3G exhibit potent DNA mutator activity in an E. coli assay, revealing the existence of a family of potential active dC/dG mutators, with possible implications for cancer.

Journal ArticleDOI
05 Sep 2002-Nature
TL;DR: Exercise in DT40 cells of a bacteriophage-encoded protein that inhibits uracil-DNA glycosylase shifts the pattern of IgV gene mutations from transversion dominance to transition dominance, providing good evidence that antibody diversification involves dC → dU deamination within the immunoglobulin locus itself.
Abstract: A functional immune system depends on the production of a wide range of immunoglobulin molecules. Immunoglobulin variable region (IgV) genes are diversified after gene rearrangement by hypermutation. In the DNA deamination model, we have proposed that deamination of dC residues to dU by activation-induced deaminase (AID) triggers this diversification. In hypermutating chicken DT40 B cells, most IgV mutations are dC → dG/dA or dG → dC/dT transversions, which are proposed to result from replication over sites of base loss produced by the excision activity of uracil-DNA glycosylase. Blocking the activity of uracil-DNA glycosylase should instead lead to replication over the dU lesion, resulting in dC → dT (and dG → dA) transitions. Here we show that expression in DT40 cells of a bacteriophage-encoded protein that inhibits uracil-DNA glycosylase shifts the pattern of IgV gene mutations from transversion dominance to transition dominance. This is good evidence that antibody diversification involves dC → dU deamination within the immunoglobulin locus itself.

Journal ArticleDOI
17 May 2002-Cell
TL;DR: Mice carrying a null mutation of the VPAC(2) receptor for VIP and PACAP (Vipr2(-/-)) are incapable of sustaining normal circadian rhythms of rest/activity behavior and the role of intercellular neuropeptidergic signaling in maintenance of circadian function within the SCN is highlighted.

Journal ArticleDOI
TL;DR: The structure of poly-l-glutamine fibers may explain why, in all but one of the neurodegenerative diseases resulting from extension of glutamine repeats, disease occurs when the number of repeats exceeds 37–40.
Abstract: A study of papers on amyloid fibers suggested to us that cylindrical β-sheets are the only structures consistent with some of the x-ray and electron microscope data. We then found that our own 7-year-old and hitherto enigmatic x-ray diagram of poly-l-glutamine fits a cylindrical sheet of 31 Å diameter made of β-strands with 20 residues per helical turn. Successive turns are linked by hydrogen bonds between both the main chain and side chain amides, and side chains point alternately into and out of the cylinder. Fibers of the exon-1 peptide of huntingtin and of the glutamine- and asparagine-rich region of the yeast prion Sup35 give the same underlying x-ray diagrams, which show that they have the same structure. Electron micrographs show that the 100-Å-thick fibers of the Sup35 peptide are ropes made of three protofibrils a little over 30 Å thick. They have a measured mass of 1,450 Da/Å, compared with 1,426 Da/Å for a calculated mass of three protofibrils each with 20 residues per helical turn wound around each other with a helical pitch of 510 Å. Published x-ray diagrams and electron micrographs show that fibers of synuclein, the protein that forms the aggregates of Parkinson disease, consist of single cylindrical β-sheets. Fibers of Alzheimer Aβ fragments and variants are probably made of either two or three concentric cylindrical β-sheets. Our structure of poly-l-glutamine fibers may explain why, in all but one of the neurodegenerative diseases resulting from extension of glutamine repeats, disease occurs when the number of repeats exceeds 37–40. A single helical turn with 20 residues would be unstable, because there is nothing to hold it in place, but two turns with 40 residues are stabilized by the hydrogen bonds between their amides and can act as nuclei for further helical growth. The Aβ peptide of Alzheimer's disease contains 42 residues, the best number for nucleating further growth. All these structures are very stable; the best hope for therapies lies in preventing their growth.

Journal ArticleDOI
TL;DR: A new set of features with the aim of standardizing access to the SCOP database, and providing a solid basis to manage the increasing number of experimental structures expected from structural genomics projects are introduced.
Abstract: The SCOP (Structural Classification of Proteins) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. Protein domains in SCOP are grouped into species and hierarchically classified into families, superfamilies, folds and classes. Recently, we introduced a new set of features with the aim of standardizing access to the database, and providing a solid basis to manage the increasing number of experimental structures expected from structural genomics projects. These features include: a new set of identifiers, which uniquely identify each entry in the hierarchy; a compact representation of protein domain classification; a new set of parseable files, which fully describe all domains in SCOP and the hierarchy itself. These new features are reflected in the ASTRAL compendium. The SCOP search engine has also been updated, and a set of links to external resources added at the level of domain entries. SCOP can be accessed at http://scop.mrc-lmb.cam.ac.uk/scop.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that β-synuclein fibrillation was inhibited by β-and γ-Synuclein, which exhibited the properties of a random coil, whereas α- and γ -synucleins were slightly more compact and structured.

Journal ArticleDOI
TL;DR: The distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases is examined, finding that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PTDIns at the 3 or 5 positions and that a PH domain specific for Ptdins(4,5)P(2) is targeted exclusively to the plasma membrane.

Journal ArticleDOI
TL;DR: Mutation analysis indicates that excessive nucleostemin, particularly mutants that lack the GTP-regulatory domain, prevents cells from entering mitosis and causes apoptosis in a p53-dependent manner.
Abstract: The unique property of stem cells to self-renew suggests specific mechanisms that regulate their cell-cycle progression. In the present study, we identify a novel protein, nucleostemin, found in the nucleoli of CNS stem cells, embryonic stem cells, and several cancer cell lines and preferentially expressed by other stem cell-enriched populations. It contains an N-terminal basic domain and two GTP-binding motifs. When stem cells differentiate, nucleostemin expression decreases rapidly prior to cell-cycle exit both in vitro and in vivo. Depletion or overexpression of nucleostemin reduces cell proliferation in CNS stem cells and transformed cells. Mutation analysis indicates that excessive nucleostemin, particularly mutants that lack the GTP-regulatory domain, prevents cells from entering mitosis and causes apoptosis in a p53-dependent manner. The N-terminal basic domain specifies nucleolar localization, the p53 interaction, and is required for the cell death caused by overexpression. This work describes a novel nucleolar mechanism that controls the cell-cycle progression in CNS stem cells and cancer cells.

Journal ArticleDOI
TL;DR: It is proposed that vesicle tethering may have separate kinetic and thermodynamic elements and that it may be usefully divided into events upstream and downstream of the function of Rab GTPases.
Abstract: Despite the recent progress in the field of membrane traffic, the question of how the specificity of membrane fusion is achieved has yet to be resolved. It has become apparent that the SNARE proteins, although central to the process of fusion, are often not the first point of contact between a vesicle and its target. Instead, a poorly understood tethering process physically links the two before fusion occurs. Many factors that have an apparent role in tethering have been identified. Among these are several large protein complexes. Until recently, these seemed unrelated, which was a surprise since proteins involved in membrane traffic often form families, members of which function in each transport step. Recent work has shown that three of the complexes are in fact related. We refer to these as the `quatrefoil9 tethering complexes, since they appear to share a fourfold nature. Here we describe the quatrefoil complexes and other, unrelated, tethering complexes, and discuss ideas about their function. We propose that vesicle tethering may have separate kinetic and thermodynamic elements and that it may be usefully divided into events upstream and downstream of the function of Rab GTPases. Moreover, the diversity of tethering complexes in the cell suggests that not all tethering events occur through the same mechanisms.

Journal ArticleDOI
TL;DR: A unique spatiotemporal pattern of MMP-9 expression suggests its involvement in activity-dependent remodeling of dendritic architecture with possible effects on synaptic physiology.
Abstract: Neurons of adult brain are able to remodel their synaptic connections in response to various stimuli. Modifications of the peridendritic environment, including the extracellular matrix, are likely to play a role during synapse remodeling. Proteolytic disassembly of ECM is a complex process using the regulated actions of specific extracellular proteinases. One of best-characterized families of matrix-modifying enzymes is the matrix metalloproteinase (MMP) family. Here, we describe changes in the expression and function of two well known MMPs, MMP-9 and MMP-2, in adult rat brain before and after systemic administration of the glutamate receptor agonist kainate. Kainate application results in enhanced synaptic transmission and seizures followed by selective tissue remodeling, primarily in hippocampal dentate gyrus. MMP-9 but not MMP-2 was highly expressed by neurons in normal adult rat brain. MMP-9 protein was localized in neuronal cell bodies and dendrites. Kainate upregulated the level of MMP-9 mRNA and protein within hours after drug administration. This was followed several hours later by MMP-9 enzymatic activation. Within hippocampus, MMP-9 mRNA and activity were increased selectively in dentate gyrus, including its dendritic layer. In addition, MMP-9 mRNA levels decreased in areas undergoing neuronal cell loss. This unique spatiotemporal pattern of MMP-9 expression suggests its involvement in activity-dependent remodeling of dendritic architecture with possible effects on synaptic physiology.

Journal ArticleDOI
TL;DR: It is found that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC, and extended to coregulation of RpoS with capsule and FtsZ.
Abstract: Translation of the stationary phase sigma factor RpoS is stimulated by at least two small RNAs, DsrA and RprA. DsrA disrupts an inhibitory secondary structure in the rpoS leader mRNA by pairing with the upstream RNA. Mutations in rprA and compensating mutations in the rpoS leader demonstrate that RprA interacts with the same region of the RpoS leader as DsrA. This is the first example of two different small RNAs regulating a common target. Regulation of these RNAs differs. DsrA synthesis is increased at low temperature. We find that RprA synthesis is regulated by the RcsC/RcsB phosphorelay system, previously found to regulate capsule synthesis and promoters of ftsZ and osmC. An rcsB null mutation abolishes the basal level, whereas mutations in rcsC that activate capsule synthesis also activate expression of the rprA promoter. An essential site with similarity to other RcsB-regulated promoters was defined in the rprA promoter. Activation of the RcsC/RcsB system leads to increased RpoS synthesis, in an RprA-dependent fashion. This work suggests a new signal for RpoS translation and extends the global regulation effected by the RcsC/RcsB system to coregulation of RpoS with capsule and FtsZ.

Journal ArticleDOI
TL;DR: A detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution was presented in this article.

Journal Article
TL;DR: A detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution was presented in this article.

Journal ArticleDOI
01 Jul 2002-Immunity
TL;DR: It is found that these Th2 cytokines are not essential for fetal survival even during allogeneic pregnancy, and a threshold is reached at which IL-4 alone can activate all Th2 effector functions.