scispace - formally typeset
Search or ask a question

Showing papers by "Laboratory of Molecular Biology published in 2015"


Journal ArticleDOI
TL;DR: Current understanding of the regulation of circRNA biogenesis is highlighted, including both the competition between splicing and back-splicing and the previously under-appreciated alternative circularization.
Abstract: Unlike linear RNAs terminated with 5′ caps and 3′ tails, circular RNAs are characterized by covalently closed loop structures with neither 5′ to 3′ polarity nor polyadenylated tail. This intrinsic characteristic has led to the general under-estimation of the existence of circular RNAs in previous polyadenylated transcriptome analyses. With the advent of specific biochemical and computational approaches, a large number of circular RNAs from back-spliced exons (circRNAs) have been identified in various cell lines and across different species. Recent studies have uncovered that back-splicing requires canonical spliceosomal machinery and can be facilitated by both complementary sequences and specific protein factors. In this review, we highlight our current understanding of the regulation of circRNA biogenesis, including both the competition between splicing and back-splicing and the previously under-appreciated alternative circularization.

1,384 citations


Journal ArticleDOI
TL;DR: In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle–Wells syndrome, familial cold autoinflammatory syndrome and urate crystal–induced peritonitis and the findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of theNLRP3 inflammasome.
Abstract: The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation, caloric restriction, high-intensity exercise, or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however, the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB, but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to urate crystals, ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family, CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11, inflammasome activation. Mechanistically, BHB inhibits the NLRP3 inflammasome by preventing K(+) efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK), reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle, and independently of uncoupling protein-2 (UCP2), sirtuin-2 (SIRT2), the G protein-coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome-mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle-Wells syndrome, familial cold autoinflammatory syndrome and urate crystal-induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.

1,205 citations


Journal ArticleDOI
TL;DR: A comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.
Abstract: Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

797 citations


Journal ArticleDOI
TL;DR: This study provides the first survey of clock-like mutational processes operating in human somatic cells, using mutations from 10,250 cancer genomes across 36 cancer types to investigate Clock-like Mutational processes that have been operating in normal human cells.
Abstract: During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operating in human somatic cells.

796 citations


Posted ContentDOI
14 Jul 2015-bioRxiv
TL;DR: Based on the global CTF determination, the local defocus for each particle and for single frames of movies is accurately refined, which improves CTF parameters of all particles for subsequent image processing.
Abstract: Accurate estimation of the contrast transfer function (CTF) is critical for a near-atomic resolution cryo electron microscopy (cryoEM) reconstruction. Here, I present a GPU-accelerated computer program, Gctf, for accurate and robust, real-time CTF determination. Similar to alternative programs, the main target of Gctf is to maximize the cross-correlation of a simulated CTF with the power spectra of observed micrographs after background reduction. However, novel approaches in Gctf improve both speed and accuracy. In addition to GPU acceleration, a fast ?1-dimensional search plus 2-dimensional refinement (1S2R)? procedure significantly speeds up Gctf. Based on the global CTF determination, the local defocus for each particle and for single frames of movies is accurately refined, which improves CTF parameters of all particles for subsequent image processing. Novel diagnosis method using equiphase averaging(EFA) and self-consistency verification procedures have also been implemented in the program for practical use, especially for aims of near-atomic reconstruction. Gctf is an independent program and the outputs can be easily imported into other cryoEM software such as Relion and Frealign. The results from several representative datasets are shown and discussed in this paper.

744 citations


Journal ArticleDOI
TL;DR: The recent advances in electron detection and image processing are reviewed and the exciting new opportunities that they offer to structural biology research are illustrated.

738 citations


Journal ArticleDOI
07 Aug 2015-Science
TL;DR: The prion concept appears to apply to all human neurodegenerative diseases with abnormal protein assemblies, including AD and PD, which implies that the same molecular events occur independently in a large number of cells in an otherwise healthy brain.
Abstract: The pathological assembly of Aβ, tau, and α-synuclein is at the heart of Alzheimer's and Parkinson's diseases. Extracellular deposits of Aβ and intraneuronal tau inclusions define Alzheimer's disease, whereas intracellular inclusions of α-synuclein make up the Lewy pathology of Parkinson's disease. Most cases of disease are sporadic, but some are inherited in a dominant manner. Mutations frequently occur in the genes encoding Aβ, tau, and α-synuclein. Overexpression of these mutant proteins can give rise to disease-associated phenotypes. Protein assembly begins in specific regions of the brain during the process of Alzheimer's and Parkinson's diseases, from where it spreads to other areas.

724 citations


Journal ArticleDOI
22 May 2015-Science
TL;DR: The power of ILCs may be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy and in immunopathology, where they play an intriguing role beyond immunity.
Abstract: Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy.

663 citations


Journal ArticleDOI
TL;DR: It is shown that precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives, and thus that all the cellular subsystems could have arisen simultaneously through common chemistry.
Abstract: A minimal cell can be thought of as comprising informational, compartment-forming and metabolic subsystems. To imagine the abiotic assembly of such an overall system, however, places great demands on hypothetical prebiotic chemistry. The perceived differences and incompatibilities between these subsystems have led to the widely held assumption that one or other subsystem must have preceded the others. Here we experimentally investigate the validity of this assumption by examining the assembly of various biomolecular building blocks from prebiotically plausible intermediates and one-carbon feedstock molecules. We show that precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives, and thus that all the cellular subsystems could have arisen simultaneously through common chemistry. The key reaction steps are driven by ultraviolet light, use hydrogen sulfide as the reductant and can be accelerated by Cu(I)–Cu(II) photoredox cycling. A minimal cell — one that has all the minimum requirements for life — is still a complex entity comprising informational, compartment-forming and metabolic subsystems. Here it is shown that, contrary to previous assumptions, a common prebiotically plausible chemistry can give rise to building blocks for all the subsystems.

655 citations


Journal ArticleDOI
TL;DR: Some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes.
Abstract: Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes.

582 citations


Journal ArticleDOI
01 Dec 2015-eLife
TL;DR: An image classification procedure is described that characterizes molecular plasticity at the secondary structure level, and applies this method to identify three distinct conformations in a previous sample of γ-secretase, revealing how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the trans Membrane domain.
Abstract: An enzyme called gamma-secretase cuts other proteins in cells into smaller pieces. Like most enzymes, gamma-secretase is expected to move through several different three-dimensional shapes to perform its role, and identifying these structures could help us to understand how the enzyme works. One of the proteins that is targeted by gamma-secretase is called amyloid precursor protein, and cutting this protein results in the formation of so-called amyloid-beta peptides. When gamma-secretase doesn't work properly, these amyloid-beta peptides can accumulate in the brain and large accumulations of these peptides have been observed in the brains of patients with Alzheimer's disease. Earlier in 2015, a group of researchers used a technique called cryo-electron microscopy (cryo-EM) to produce a three-dimensional model of gamma-secretase. This revealed that the active site of the enzyme, that is, the region that is used to cut the other proteins, is particularly flexible. Now, Bai et al. – including many of the researchers from the earlier work – studied this flexibility in more detail. For the experiments, gamma-secretase was exposed to an inhibitor molecule that stopped it from cutting other proteins. This meant that the structure of gamma-secretase became more rigid than normal, which made it possible to collect more detailed structural information using cryo-EM. Bai et al. also developed new methods for processing images to separate the images of individual enzyme molecules based on the different shapes they had adopted at the time. These methods make it possible to view a mixture of very similar enzyme structures that differ only in a small region of the protein (in this case the active site). In the future, it would be useful to repeat these imaging experiments using a range of different molecules that alter the activity of gamma-secretase. Furthermore, the new image processing methods developed by Bai et al. could be used to study flexibility in the shapes of other proteins.

Journal ArticleDOI
TL;DR: A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions.
Abstract: The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 A. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

Journal ArticleDOI
10 Sep 2015-Nature
TL;DR: The atomic structure of human γ-secretase at 3.4 Å resolution is reported, determined by single-particle cryo-electron microscopy, serving as a molecular basis for mechanistic understanding ofγ- secretase function.
Abstract: Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 A resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.

Journal ArticleDOI
Maanasa Raghavan1, Matthias Steinrücken2, Matthias Steinrücken3, Kelley Harris3, Stephan Schiffels4, Simon Rasmussen5, Michael DeGiorgio6, Anders Albrechtsen1, Cristina Valdiosera7, Cristina Valdiosera1, María C. Ávila-Arcos8, María C. Ávila-Arcos1, Anna-Sapfo Malaspinas1, Anders Eriksson9, Anders Eriksson10, Ida Moltke1, Mait Metspalu11, Mait Metspalu12, Julian R. Homburger8, Jeffrey D. Wall13, Omar E. Cornejo14, J. Víctor Moreno-Mayar1, Thorfinn Sand Korneliussen1, Tracey Pierre1, Morten Rasmussen8, Morten Rasmussen1, Paula F. Campos1, Paula F. Campos15, Peter de Barros Damgaard1, Morten E. Allentoft1, John Lindo16, Ene Metspalu11, Ene Metspalu12, Ricardo Rodríguez-Varela17, Josefina Mansilla, Celeste Henrickson18, Andaine Seguin-Orlando1, Helena Malmström19, Thomas W. Stafford20, Thomas W. Stafford1, Suyash Shringarpure8, Andrés Moreno-Estrada8, Monika Karmin11, Monika Karmin12, Kristiina Tambets12, Anders Bergström4, Yali Xue4, Vera Warmuth21, Andrew D. Friend9, Joy S. Singarayer22, Paul J. Valdes23, Francois Balloux, Ilán Leboreiro, Jose Luis Vera, Héctor Rangel-Villalobos24, Davide Pettener25, Donata Luiselli25, Loren G. Davis26, Evelyne Heyer27, Christoph P. E. Zollikofer28, Marcia S. Ponce de León28, Colin Smith7, Vaughan Grimes29, Vaughan Grimes30, Kelly-Anne Pike29, Michael Deal29, Benjamin T. Fuller31, Bernardo Arriaza32, Vivien G. Standen32, Maria F. Luz, Francois Ricaut33, Niede Guidon, Ludmila P. Osipova34, Ludmila P. Osipova35, Mikhail Voevoda34, Mikhail Voevoda35, Olga L. Posukh34, Olga L. Posukh35, Oleg Balanovsky, Maria Lavryashina36, Yuri Bogunov, Elza Khusnutdinova34, Elza Khusnutdinova37, Marina Gubina, Elena Balanovska, Sardana A. Fedorova38, Sergey Litvinov12, Sergey Litvinov34, Boris Malyarchuk34, Miroslava Derenko34, M. J. Mosher39, David Archer40, Jerome S. Cybulski41, Jerome S. Cybulski42, Barbara Petzelt, Joycelynn Mitchell, Rosita Worl, Paul Norman8, Peter Parham8, Brian M. Kemp14, Toomas Kivisild9, Toomas Kivisild12, Chris Tyler-Smith4, Manjinder S. Sandhu4, Manjinder S. Sandhu43, Michael H. Crawford44, Richard Villems11, Richard Villems12, David Glenn Smith45, Michael R. Waters46, Ted Goebel46, John R. Johnson47, Ripan S. Malhi16, Mattias Jakobsson19, David J. Meltzer48, David J. Meltzer1, Andrea Manica9, Richard Durbin4, Carlos Bustamante8, Yun S. Song3, Rasmus Nielsen3, Eske Willerslev1 
21 Aug 2015-Science
TL;DR: The results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders.
Abstract: How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

Journal ArticleDOI
TL;DR: A role for miRNAs is uncovered in regulating m( 6)A formation of mRNAs and provide a foundation for future functional studies of m(6)A modification in cell reprogramming.

Journal ArticleDOI
TL;DR: It is reported that mutations affecting the splicing factor S RSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function, and this data provide a mechanistic link between a mutant spliceosomal protein, alterations in thesplicing of key regulators, and impaired hematoiesis.

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: The structure of the intact mitoribosome is determined to 3.5 angstrom resolution by means of single-particle electron cryogenic microscopy and reveals 80 extensively interconnected proteins, 36 of which are specific to mitochondria, and three ribosomal RNA molecules.
Abstract: The highly divergent ribosomes of human mitochondria (mitoribosomes) synthesize 13 essential proteins of oxidative phosphorylation complexes. We have determined the structure of the intact mitoribosome to 3.5 angstrom resolution by means of single-particle electron cryogenic microscopy. It reveals 80 extensively interconnected proteins, 36 of which are specific to mitochondria, and three ribosomal RNA molecules. The head domain of the small subunit, particularly the messenger (mRNA) channel, is highly remodeled. Many intersubunit bridges are specific to the mitoribosome, which adopts conformations involving ratcheting or rolling of the small subunit that are distinct from those seen in bacteria or eukaryotes. An intrinsic guanosine triphosphatase mediates a contact between the head and central protuberance. The structure provides a reference for analysis of mutations that cause severe pathologies and for future drug design.

Journal ArticleDOI
22 Jan 2015-Nature
TL;DR: This work shows in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition.
Abstract: Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and β1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).

Journal ArticleDOI
01 Jan 2015-Nature
TL;DR: Structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities and the high-conductance intracellular Ca2+ channels.
Abstract: The ryanodine receptors (RyRs) are high-conductance intracellular Ca2+ channels that play a pivotal role in the excitation–contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5,000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 A, determined by single-particle electron cryomicroscopy. Three previously uncharacterized domains, named central, handle and helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative-charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity-filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities. Using electron cryomicroscopy, the structure of the closed-state rabbit ryanodine receptor RyR1 in complex with its modulator FKBP12 is solved at 3.8 A; in addition to determining structural details of the ion-conducting channel domain, three previously uncharacterized domains help to reveal a molecular scaffold that allows long-range allosteric regulation of channel activities. Muscle contraction is regulated by the concentration of calcium ions in the cytoplasm of muscle cells. Ryanodine receptors (RyR) release Ca2+ from the sarcoplasmic reticulum to induce muscle contraction. Dysfunction of these channels contributes to the pathophysiology of important human diseases including muscular dystrophy. Three papers in this issue of Nature report high-resolution electron cryomicroscopy structures of the 2.2 MDa ryanodine receptor RyR1. Efremov et al. report the structure of rabbit RyR1 at 8.5 A resolution the presence of Ca2+ in a 'partly open' state, and at 6.1 A resolution in the absence of Ca2+ in a closed state. Zalk et al. report the rabbit RyR1 structure at 4.8 A in the absence of Ca2+ in a closed state. And third, Yan et al. report the structure of rabbit RyR1 bound to its modulator FKBP12 at a near-atomic resolution of 3.8 A. These papers reveal how calcium binding to the EF-hand domain of RyR1 regulates channel opening and facilitates calcium-induced calcium release. The authors also note that disease-causing mutations are clustered in regions of the channel that appear to be critical for normal channel function.

Journal ArticleDOI
27 Mar 2015-Science
TL;DR: The reconstruction reveals how dynactin is built around a filament containing eight copies of the actin-related protein Arp1 and one of β-actin, which is capped at each end by distinct protein complexes, and its length is defined by elongated peptides that emerge from the α-helical shoulder domain.
Abstract: Dynactin is an essential cofactor for the microtubule motor cytoplasmic dynein-1. We report the structure of the 23-subunit dynactin complex by cryo-electron microscopy to 4.0 angstroms. Our reconstruction reveals how dynactin is built around a filament containing eight copies of the actin-related protein Arp1 and one of β-actin. The filament is capped at each end by distinct protein complexes, and its length is defined by elongated peptides that emerge from the α-helical shoulder domain. A further 8.2 angstrom structure of the complex between dynein, dynactin, and the motility-inducing cargo adaptor Bicaudal-D2 shows how the translational symmetry of the dynein tail matches that of the dynactin filament. The Bicaudal-D2 coiled coil runs between dynein and dynactin to stabilize the mutually dependent interactions between all three components.

Journal ArticleDOI
TL;DR: A fully CTF-corrected template-based picking algorithm is supplemented by a fast sorting algorithm and reference-free 2D class averaging to remove false positives and yields results that are comparable to manual particle selection.

Journal ArticleDOI
13 Aug 2015-Cell
TL;DR: Cryo-electron microscopy structures of MTs bound to GMPCPP, GTPγS, or GDP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis.

Journal ArticleDOI
10 Apr 2015-Science
TL;DR: In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis.
Abstract: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.

Journal ArticleDOI
10 Jul 2015-Nature
TL;DR: The crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation and redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb.
Abstract: The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal-recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy. PINK1 is stabilized on the outside of depolarized mitochondria and phosphorylates polyubiquitin as well as the PARKIN ubiquitin-like (Ubl) domain. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in patients with AR-JP. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilization of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens up new avenues to identify small-molecule PARKIN activators.

Journal ArticleDOI
TL;DR: In this article, three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats.
Abstract: Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms.

Journal ArticleDOI
Jenny C. Taylor1, Jenny C. Taylor2, Hilary C. Martin2, Stefano Lise2, John Broxholme2, Jean-Baptiste Cazier2, Andrew J. Rimmer2, Alexander Kanapin2, Gerton Lunter2, Simon Fiddy2, Chris Allan2, A. Radu Aricescu2, Moustafa Attar2, Christian Babbs3, Jennifer Becq4, David Beeson3, Celeste Bento5, P Bignell3, Edward Blair3, Veronica J. Buckle3, Katherine R. Bull3, Katherine R. Bull2, Ondrej Cais6, Holger Cario7, Helen Chapel3, Richard R. Copley2, Richard R. Copley1, Richard J. Cornall3, Jude Craft1, Jude Craft2, Karin Dahan8, Emma E. Davenport2, Calliope A. Dendrou3, Olivier Devuyst9, Aimee L. Fenwick3, Jonathan Flint2, Lars Fugger3, Rodney D. Gilbert10, Anne Goriely3, Angie Green2, Ingo H. Greger6, Russell J. Grocock4, Anja V. Gruszczyk3, Robert W. Hastings3, Edouard Hatton2, Doug Higgs3, Adrian V. S. Hill3, Adrian V. S. Hill2, Christopher Holmes3, Christopher Holmes2, Malcolm F. Howard2, Malcolm F. Howard1, Linda Hughes2, Peter Humburg2, David W. Johnson3, Fredrik Karpe3, Zoya Kingsbury4, Usha Kini3, Julian C. Knight2, Jon P. Krohn2, Sarah Lamble2, Craig B. Langman11, Lorne Lonie2, Joshua Luck3, Davis J. McCarthy2, Simon J. McGowan3, Mary Frances McMullin12, Kerry A. Miller3, Lisa Murray4, Andrea H. Németh3, M. Andrew Nesbit3, David J. Nutt13, Elizabeth Ormondroyd3, Annette Bang Oturai14, Alistair T. Pagnamenta1, Alistair T. Pagnamenta2, Smita Y. Patel3, Melanie J. Percy15, Nayia Petousi3, Paolo Piazza2, Sian E. Piret3, Guadalupe Polanco-Echeverry2, Niko Popitsch1, Niko Popitsch2, Fiona Powrie3, Christopher W. Pugh3, Lynn Quek3, Peter A. Robbins3, Kathryn J. H. Robson3, Alexandra Russo, Natasha Sahgal2, Pauline A. van Schouwenburg3, Anna Schuh3, Anna Schuh1, Earl D. Silverman, Alison Simmons3, Per Soelberg Sørensen14, Elizabeth Sweeney, John Taylor3, John Taylor1, Rajesh V. Thakker3, Ian Tomlinson2, Ian Tomlinson1, Amy Trebes2, Stephen R.F. Twigg3, Holm H. Uhlig3, Paresh Vyas3, Timothy J. Vyse16, Steven A. Wall3, Hugh Watkins3, Michael P. Whyte17, Lorna Witty2, Ben Wright2, Christopher Yau2, David Buck2, Sean Humphray4, Peter J. Ratcliffe3, John I. Bell3, Andrew O.M. Wilkie3, David Bentley4, Peter Donnelly2, Peter Donnelly3, Gilean McVean2 
TL;DR: It is found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy.
Abstract: To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.

Journal ArticleDOI
25 Dec 2015-eLife
TL;DR: It is found that acetylcholine (ACh) is the most broadly used neurotransmitter and its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome.
Abstract: Neurotransmitter maps are important complements to anatomical maps and represent an invaluable resource to understand nervous system function and development. We report here a comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA, revealing twice as many GABA-positive neuron classes as previously reported. We define previously unknown glia-like cells that take up GABA, as well as 'GABA uptake neurons' which do not synthesize GABA but take it up from the extracellular environment, and we map the expression of previously uncharacterized ionotropic GABA receptors. We use the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans.

Journal ArticleDOI
TL;DR: Underlie some of the principles behind the cryo-EM methodology of single particle analysis and discuss some recent results of its application to challenging systems of paramount biological importance.

Journal ArticleDOI
09 Apr 2015-Cell
TL;DR: An amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport is established and 341 hits with particular enrichment of peroxisome genes are identified, suggesting a previously unappreciated pathway for cholesterol transport.

Journal ArticleDOI
29 Jan 2015-Nature
TL;DR: This study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning and supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome.
Abstract: A working model for histone H3-induced dynamic regulation of the de novo DNA methyltransferase.